Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143239

RESUMEN

Bacteriophages are the most abundant biological entities on Earth, but our understanding of many aspects of their lifecycles is still incomplete. Here, we have structurally analysed the infection cycle of the siphophage Casadabanvirus JBD30. Using its baseplate, JBD30 attaches to Pseudomonas aeruginosa via the bacterial type IV pilus, whose subsequent retraction brings the phage to the bacterial cell surface. Cryo-electron microscopy structures of the baseplate-pilus complex show that the tripod of baseplate receptor-binding proteins attaches to the outer bacterial membrane. The tripod and baseplate then open to release three copies of the tape-measure protein, an event that is followed by DNA ejection. JBD30 major capsid proteins assemble into procapsids, which expand by 7% in diameter upon filling with phage dsDNA. The DNA-filled heads are finally joined with 180-nm-long tails, which bend easily because flexible loops mediate contacts between the successive discs of major tail proteins. It is likely that the structural features and replication mechanisms described here are conserved among siphophages that utilize the type IV pili for initial cell attachment.

2.
Viruses ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39066236

RESUMEN

A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus.


Asunto(s)
Filogenia , Enfermedades de las Plantas , Rubus , Rubus/virología , Enfermedades de las Plantas/virología , Animales , ARN Viral/genética , República Checa , Noruega , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , Virus ARN de Sentido Negativo/aislamiento & purificación , Análisis de Secuencia de ADN , Análisis por Conglomerados
3.
Viruses ; 15(12)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38140523

RESUMEN

Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes. Analysis of nearly complete genomes from 14 RaEV1 isolates highlighted regions of variance, particularly marked by indel events. The evidence from phylogenetic and sequence analyses supports the classification of RaEV1 as a distinct species within the Enamovirus genus. Among the 289 plant and 168 invertebrate samples analyzed, RaEV1 was detected in 10.4% and 0.4%, respectively. Most detections occurred in plants that were also infected with other common raspberry viruses. The virus was present in both commercial and wild raspberries, indicating the potential of wild plants to act as viral reservoirs. Experiments involving aphids as potential vectors demonstrated their ability to acquire RaEV1 but not to successfully transmit it to plants.


Asunto(s)
Áfidos , Luteoviridae , Rubus , Virus , Animales , Luteoviridae/genética , Filogenia , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA