Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 34(11): 4428-4452, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35938694

RESUMEN

Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Mamíferos/metabolismo
2.
Plant J ; 116(1): 282-302, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37159480

RESUMEN

Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steer plant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of significant research interest, yet a molecular understanding of transcriptional responses to touch is largely absent in cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation of wheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred ±25 min after touching, with most of the genes being upregulated. While most genes returned to basal expression level by 1-2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat. Functional categories such as transcription factors, kinases, phytohormones, and Ca2+ regulation were affected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosynthesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wall composition. Furthermore, several cereal-specific transcriptomic footprints were identified that were not observed in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced signalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and marker genes for further study of (a)biotic stress responses in cereals.


Asunto(s)
Arabidopsis , Hordeum , Tacto , Grano Comestible/genética , Arabidopsis/genética , Hordeum/genética , Triticum/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas/genética
3.
J Exp Bot ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812358

RESUMEN

Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of ß-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located - in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled ANAC102's dual role in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.

4.
Plant J ; 110(2): 499-512, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080330

RESUMEN

Succinate dehydrogenase (SDH, complex II), which plays an essential role in mitochondrial respiration and tricarboxylic acid metabolism, requires the assembly of eight nuclear-encoded subunits and the insertion of various cofactors. Here, we report on the characterization of an Arabidopsis thaliana leucine-tyrosine-arginine (LYR) protein family member SDHAF1, (At2g39725) is a factor required for SDH activity. SDHAF1 is located in mitochondria and can fully complement the yeast SDHAF1 deletion strain. Knockdown of SDHAF1 using RNA interference resulted in a decrease in seedling hypocotyl elongation and reduced SDH activity. Proteomic analyses revealed a decreased abundance of various SDH subunits and assembly factors. Protein interaction assays revealed that SDHAF1 can interact exclusively with the Fe-S cluster-containing subunit SDH2 and HSCB, a cochaperone involved in Fe-S cluster complex recruitment. Therefore, we propose that in Arabidopsis, SDHAF1 plays a role in the biogenesis of SDH2 to form the functional complex II, which is essential for mitochondrial respiration and metabolism.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
5.
Plant J ; 108(4): 912-959, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34528296

RESUMEN

The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.


Asunto(s)
ADN de Plantas/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , ADN Mitocondrial/genética , Lípidos/análisis , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Plantas/ultraestructura , Proteómica , Transducción de Señal
6.
Plant Physiol ; 186(1): 36-52, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33624829

RESUMEN

Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.


Asunto(s)
Mitocondrias/fisiología , Oxidación-Reducción , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Transducción de Señal
7.
Plant Physiol ; 186(4): 2205-2221, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33914871

RESUMEN

Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient "super-induction" 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Senescencia de la Planta/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo
8.
J Exp Bot ; 73(21): 7182-7197, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36055768

RESUMEN

Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.


Asunto(s)
Arabidopsis , Transducción de Señal , Semillas , Mitocondrias , Eucariontes , Quinasas Ciclina-Dependientes , Arabidopsis/genética , Factores de Transcripción/genética
9.
Proc Natl Acad Sci U S A ; 116(46): 23345-23356, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31662474

RESUMEN

Mechanical stimuli, such as wind, rain, and touch affect plant development, growth, pest resistance, and ultimately reproductive success. Using water spray to simulate rain, we demonstrate that jasmonic acid (JA) signaling plays a key role in early gene-expression changes, well before it leads to developmental changes in flowering and plant architecture. The JA-activated transcription factors MYC2/MYC3/MYC4 modulate transiently induced expression of 266 genes, most of which peak within 30 min, and control 52% of genes induced >100-fold. Chromatin immunoprecipitation-sequencing analysis indicates that MYC2 dynamically binds >1,300 promoters and trans-activation assays show that MYC2 activates these promoters. By mining our multiomic datasets, we identified a core MYC2/MYC3/MYC4-dependent "regulon" of 82 genes containing many previously unknown MYC2 targets, including transcription factors bHLH19 and ERF109 bHLH19 can in turn directly activate the ORA47 promoter, indicating that MYC2/MYC3/MYC4 initiate a hierarchical network of downstream transcription factors. Finally, we also reveal that rapid water spray-induced accumulation of JA and JA-isoleucine is directly controlled by MYC2/MYC3/MYC4 through a positive amplification loop that regulates JA-biosynthesis genes.


Asunto(s)
Arabidopsis/fisiología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mecanotransducción Celular , Oxilipinas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Proteoma , Lluvia
10.
BMC Microbiol ; 21(1): 23, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430782

RESUMEN

BACKGROUND: Since its discovery in 2007, the importance of the human gut bacterium Prevotella copri (P. copri) has been widely recognized with its links to diet and health status and potential as next generation probiotic. Therefore, precise, convenient and cost-effective diagnostic tools for the detection and quantification of P. copri from clinical and environmental samples are needed. RESULTS: In this study, a Sybr Green qPCR protocol for P. copri detection and quantification was developed and tested on P. copri-spiked murine faeces samples targeting both the 16S rRNA gene and P. copri genome specific genes. The use of one 16S rRNA primer pair and 2 genome specific primer pairs resulted in at least 10x higher specificity and sensitivity than the primer-only PCR currently cited in the literature, reaching a sensitivity of 103 CFU/mL. Furthermore, we showed that the new 16S rRNA primer set provided the best balance of detection of a wide range of P. copri strains, while avoiding off-target detection of other Prevotella genus species. The quantification of P. copri in human stool samples using the new 16S rRNA primers also correlated well with 16S rRNA high throughput MiSeq sequencing data (r2 = 0.6604, p = 0.0074). The two genome specific primer pairs on the other hand uniquely detect the DSM18205 reference strain, allowing differential detection of indigenous and experimentally administered P. copri populations. Finally, it was shown that SYBR green qPCR mixes have an influence on sensitivity and specificity, with Biorad SsoAdvanced Universal SYBR Green Supermix performing the best under our test conditions of six commercially available SYBR green master mixes. CONCLUSIONS: This improved qPCR-based method will allow accurate P. copri identification and quantification. Moreover, this methodology can also be applied to identify other bacterial species in complex samples.


Asunto(s)
Heces/microbiología , Prevotella/aislamiento & purificación , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Animales , Benzotiazoles/química , Cartilla de ADN/genética , ADN Bacteriano/genética , Diaminas/química , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Filogenia , Prevotella/genética , Quinolinas/química , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Adulto Joven
11.
Mol Biol Evol ; 36(5): 974-989, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938771

RESUMEN

Because of their symbiotic origin, many mitochondrial proteins are well conserved across eukaryotic kingdoms. It is however less obvious how specific lineages have obtained novel nuclear-encoded mitochondrial proteins. Here, we report a case of mitochondrial neofunctionalization in plants. Phylogenetic analysis of genes containing the Domain of Unknown Function 295 (DUF295) revealed that the domain likely originated in Angiosperms. The C-terminal DUF295 domain is usually accompanied by an N-terminal F-box domain, involved in ubiquitin ligation via binding with ASK1/SKP1-type proteins. Due to gene duplication, the gene family has expanded rapidly, with 94 DUF295-related genes in Arabidopsis thaliana alone. Two DUF295 family subgroups have uniquely evolved and quickly expanded within Brassicaceae. One of these subgroups has completely lost the F-box, but instead obtained strongly predicted mitochondrial targeting peptides. We show that several representatives of this DUF295 Organellar group are effectively targeted to plant mitochondria and chloroplasts. Furthermore, many DUF295 Organellar genes are induced by mitochondrial dysfunction, whereas F-Box DUF295 genes are not. In agreement, several Brassicaceae-specific DUF295 Organellar genes were incorporated in the evolutionary much older ANAC017-dependent mitochondrial retrograde signaling pathway. Finally, a representative set of DUF295 T-DNA insertion mutants was created. No obvious aberrant phenotypes during normal growth and mitochondrial dysfunction were observed, most likely due to the large extent of gene duplication and redundancy. Overall, this study provides insight into how novel mitochondrial proteins can be created via "intercompartmental" gene duplication events. Moreover, our analysis shows that these newly evolved genes can then be specifically integrated into relevant, pre-existing coexpression networks.


Asunto(s)
Arabidopsis/genética , Duplicación de Gen , Proteínas Mitocondriales/genética , Familia de Multigenes , Análisis Mutacional de ADN , ADN Bacteriano , Proteínas F-Box/genética , Expresión Génica , Genoma de Planta , Mutagénesis Insercional , Proteínas de Plantas/genética , Transducción de Señal
12.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28420746

RESUMEN

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Asunto(s)
Arabidopsis/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Mitocondrial/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/genética
13.
New Phytol ; 224(4): 1668-1684, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386759

RESUMEN

Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.


Asunto(s)
Arabidopsis/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Células Vegetales/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Carbono/metabolismo , Transporte de Electrón , Glutatión/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , NAD/metabolismo , Oxígeno/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
14.
Plant Physiol ; 177(4): 1439-1452, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29930107

RESUMEN

Succinate dehydrogenase (Complex II; SDH) plays an important role in mitochondrial respiratory metabolism. The SDH complex consists of four core subunits and multiple cofactors, which must be assembled correctly to ensure enzyme function. To date, only an assembly factor (SDHAF2) required for FAD insertion into subunit SDH1 has been identified in plants. Here, we report the identification of Arabidopsis (Arabidopsis thaliana) At5g67490 as a second SDH assembly factor. Knockout of At5g67490 (sdhaf4) did not cause any phenotypic variation in seedlings but resulted in a decrease in both SDH activity and the succinate-dependent respiration rate as well as increased accumulation of succinate. Mass spectrometry analyses revealed stable levels of FAD-SDH1 in sdhaf4, together with increased levels of the FAD-SDH1 assembly factor, SDHAF2, and reduced levels of SDH2 compared with the wild type. Loss of SDHAF4 in sdhaf4 inhibited the formation of the SDH1/SDH2 intermediate, leading to the accumulation of soluble SDH1 in the mitochondrial matrix and reduced levels of SDH1 in the membrane. The increased levels of SDHAF2 suggest that the stabilization of soluble FAD-SDH1 depends on SDHAF2 availability. We conclude that SDHAF4 acts on FAD-SDH1 and promotes its assembly with SDH2, thereby stabilizing SDH2 and enabling its full assembly with SDH3/SDH4 to form the SDH complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Mitocondriales/metabolismo , Succinato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia Conservada , ADN Bacteriano , Prueba de Complementación Genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Succinato Deshidrogenasa/genética , Ácido Succínico/metabolismo
15.
Plant Cell Environ ; 42(6): 1987-2002, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30734927

RESUMEN

Crops with improved uptake of fertilizer phosphorus (P) would reduce P losses and confer environmental benefits. We examined how P-sufficient 6-week-old soil-grown Trifolium subterraneum plants, and 2-week-old seedlings in solution culture, accumulated P in roots after inorganic P (Pi) addition. In contrast to our expectation that vacuoles would accumulate excess P, after 7 days, X-ray microanalysis showed that vacuolar [P] remained low (<12 mmol kg-1 ). However, in the plants after P addition, some cortex cells contained globular structures extraordinarily rich in P (often >3,000 mmol kg-1 ), potassium, magnesium, and sodium. Similar structures were evident in seedlings, both before and after P addition, with their [P] increasing threefold after P addition. Nuclear magnetic resonance (NMR) spectroscopy showed seedling roots accumulated Pi following P addition, and transmission electron microscopy (TEM) revealed large plastids. For seedlings, we demonstrated that roots differentially expressed genes after P addition using RNAseq mapped to the T. subterraneum reference genome assembly and transcriptome profiles. Among the most up-regulated genes after 4 hr was TSub_g9430.t1, which is similar to plastid envelope Pi transporters (PHT4;1, PHT4;4): expression of vacuolar Pi-transporter homologs did not change. We suggest that subcellular P accumulation in globular structures, which may include plastids, aids cytosolic Pi homeostasis under high-P availability.


Asunto(s)
Fósforo/metabolismo , Raíces de Plantas/metabolismo , Plastidios/metabolismo , Plantones/metabolismo , Trifolium/metabolismo , Transporte Biológico , Fertilizantes , Regulación de la Expresión Génica de las Plantas , Homeostasis , Magnesio/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Potasio/metabolismo , Plantones/citología , Sodio/metabolismo , Suelo/química , Transcriptoma , Trifolium/genética , Trifolium/crecimiento & desarrollo , Vacuolas/metabolismo
16.
Plant Physiol ; 173(4): 2029-2040, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28209841

RESUMEN

Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells.


Asunto(s)
Arabidopsis/metabolismo , Mitocondrias/enzimología , Ácido Salicílico/metabolismo , Transducción de Señal , Succinato Deshidrogenasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación , Consumo de Oxígeno/efectos de los fármacos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Estrés Fisiológico , Succinato Deshidrogenasa/genética , Ácido Succínico/metabolismo , Ubiquinona/metabolismo
17.
Plant Physiol ; 173(3): 1824-1843, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28167700

RESUMEN

Plants sense and integrate a variety of signals from the environment through different interacting signal transduction pathways that involve hormones and signaling molecules. Using ALTERNATIVE OXIDASE1a (AOX1a) gene expression as a model system of retrograde or stress signaling between mitochondria and the nucleus, MYB DOMAIN PROTEIN29 (MYB29) was identified as a negative regulator (regulator of alternative oxidase1a 7 [rao7] mutant) in a genetic screen of Arabidopsis (Arabidopsis thaliana). rao7/myb29 mutants have increased levels of AOX1a transcript and protein compared to wild type after induction with antimycin A. A variety of genes previously associated with the mitochondrial stress response also display enhanced transcript abundance, indicating that RAO7/MYB29 negatively regulates mitochondrial stress responses in general. Meta-analysis of hormone-responsive marker genes and identification of downstream transcription factor networks revealed that MYB29 functions in the complex interplay of ethylene, jasmonic acid, salicylic acid, and reactive oxygen species signaling by regulating the expression of various ETHYLENE RESPONSE FACTOR and WRKY transcription factors. Despite an enhanced induction of mitochondrial stress response genes, rao7/myb29 mutants displayed an increased sensitivity to combined moderate light and drought stress. These results uncover interactions between mitochondrial retrograde signaling and the regulation of glucosinolate biosynthesis, both regulated by RAO7/MYB29. This common regulator can explain why perturbation of the mitochondrial function leads to transcriptomic responses overlapping with responses to biotic stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Antimicina A/farmacología , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes , Immunoblotting , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Transcripción/metabolismo
18.
Plant Cell ; 27(11): 3190-212, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26530087

RESUMEN

Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca(2+) signaling may play a central role in this process. Free Ca(2+) dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca(2+) dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca(2+) uniporter machinery in mammals. MICU binds Ca(2+) and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca(2+) sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca(2+) in the matrix. Furthermore, Ca(2+) elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca(2+) signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca(2+) uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca(2+) uptake by moderating influx, thereby shaping Ca(2+) signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca(2+) signaling in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Motivos EF Hand , Mitocondrias/metabolismo , Arabidopsis/genética , Calcio , Señalización del Calcio , Respiración de la Célula , Citosol/metabolismo , ADN Bacteriano/genética , Mitocondrias/ultraestructura , Mutagénesis Insercional/genética , Filogenia , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Unión Proteica , Transporte de Proteínas , Plantones/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
19.
Plant J ; 88(4): 542-558, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27425258

RESUMEN

Mitochondria are crucial for plant viability and are able to communicate information on their functional status to the cellular nucleus via retrograde signalling, thereby affecting gene expression. It is currently unclear if retrograde signalling in response to constitutive mitochondrial biogenesis defects is mediated by the same pathways as those triggered during acute mitochondrial dysfunction. Furthermore, it is unknown if retrograde signalling can effectively improve plant performance when mitochondrial function is constitutively impaired. Here we show that retrograde signalling in mutants defective in mitochondrial proteins RNA polymerase rpotmp or prohibitin atphb3 can be suppressed by knocking out the transcription factor ANAC017. Genome-wide RNA-seq expression analysis revealed that ANAC017 is almost solely responsible for the most dramatic transcriptional changes common to rpotmp and atphb3 mutants, regulating classical marker genes such as alternative oxidase 1a (AOX1a) and also previously-uncharacterised DUF295 genes that appear to be new retrograde markers. In contrast, ANAC017 does not regulate intra-mitochondrial gene expression or transcriptional changes unique to either rpotmp or atphb3 genotype, suggesting the existence of currently unknown signalling cascades. The data show that ANAC017 function extends beyond common retrograde transcriptional responses and affects downstream protein abundance and enzyme activity of alternative oxidase, as well as steady-state energy metabolism in atphb3 plants. Furthermore, detailed growth analysis revealed that ANAC017-dependent retrograde signalling provides benefits for growth and productivity in plants with mitochondrial defects. In conclusion, ANAC017 plays a key role in both biogenic and operational mitochondrial retrograde signalling, and improves plant performance when mitochondrial function is constitutively impaired.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Prohibitinas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
20.
Plant Physiol ; 171(3): 1551-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27021189

RESUMEN

Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.


Asunto(s)
Mitocondrias/metabolismo , Fenómenos Fisiológicos de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Muerte Celular , Interacciones Huésped-Patógeno , Células Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiología , Transducción de Señal , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA