Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Health Perspect ; 113(5): 650-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866779

RESUMEN

Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic effects of these toxins among persons with asthma and other chronic respiratory impairment.


Asunto(s)
Asma/etiología , Dinoflagelados/patogenicidad , Exposición por Inhalación , Toxinas Marinas/efectos adversos , Oxocinas/efectos adversos , Adolescente , Adulto , Aerosoles , Anciano , Animales , Niño , Cromatografía Líquida de Alta Presión , Femenino , Florida , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Recreación , Pruebas de Función Respiratoria
2.
Fla J Environ Health ; 184: 29, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20151031

RESUMEN

Microbial water quality indicators are used to determine whether a water body is safe for recreational purposes. There have been concerns raised about the appropriate use of microbial indicators to regulate recreational uses of water bodies, in particular those located in tropical and sub-tropical environments. This prospective cohort pilot study evaluated the relationship between microbial water quality indicators and public health within two public beaches without known sewage discharge, but with historically high microbial levels for one beach, in subtropical Miami-Dade County (Florida). Monitoring was conducted in three phases: daily water monitoring, beach sand sampling, and spatially intense water sampling. An epidemiological questionnaire from a Los Angeles recreational beach-goer study was used to assess the self-reported swimming-related symptoms and exposures. There was no significant association between the number nor the type of reported symptoms and the different sampling months or beach sites, although persons who returned repeatedly to the beach were more likely to report symptoms. The number of indicator organisms correlated negatively with the frequency of symptoms reported by recreational beach goers. Results of the daily monitoring indicated that different indicators provided conflicting results concerning beach water quality.Larger epidemiologic studies with individual exposure monitoring are recommended to further evaluate these potentially important associations in subtropical recreational waters.

3.
Harmful Algae 2002 (2002) ; 10: 508-510, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-26436145

RESUMEN

Very little has been published in the scientific literature on the human health effects of Florida red tide, either as human clinical case reports or formal epidemiologic studies. In addition to the health effects associated with the ingestion of contaminated shellfish, there have been multiple anecdotal reports of respiratory irritation and possible immunologic effects associated with the inhalation of aerosolized Florida red tide. To investigate the human health effects from environmental exposure to red tide toxins, we have formed an interdisciplinary team of scientists. We have created a network of public and environmental health workers who periodically report local conditions as a red tide develops. In addition, we have access to environmental monitoring data as well as data from a surveillance program supported through the Florida Poison Information Network. When a red tide moves onshore where people might be exposed, the team rapidly assembles at the site to collect environmental samples and epidemiologic data. To assess the more long-term effects from environmental exposure to red tide toxins, we are conducting epidemiologic studies involving occupational and sensitive populations who live in areas that are regularly impacted by red tides. Other scientists are evaluating the acute and chronic respiratory effects of red tides and brevetoxins in both rat and sheep models as well as refinement of toxin measurement methodology. These models are being used to refine and validate the biomarkers of brevetoxins exposure as well as explore the pathophysiology of health effects from brevetoxins respiratory exposure. Bolstered by the additional research in rat and sheep models, this interdisciplinary scientific team is exploring the acute and chronic exposures and health effects of aerosolized Florida red tides in animal models and various human populations. In the future, this research can be applied to the understanding of exposure and effects of other aerosolized natural toxins such as cyanobacterial toxins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA