Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Reproduction ; 167(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377683

RESUMEN

In brief: Seahorses exhibit male pregnancy and are thus valuable comparative models for the study of the physiology and evolution of pregnancy. This study shows that protein is transported from fathers to developing embryos during gestation, and provides new knowledge about paternal contributions to embryonic development. Abstract: Syngnathid embryos (seahorses, pipefishes and seadragons) develop on or in the male in a specialised brooding structure (brood pouch). Seahorse brood pouches supply nutrients, including lipids, to developing embryos (patrotrophy). We tested the hypothesis that proteins, vital for gene regulation and tissue growth during embryogenesis, are also transported from father to embryos, using the Australian pot-bellied seahorse, Hippocampus abdominalis. We used dry masses and total nitrogen content to estimate the total protein content of newly fertilised egg and neonate H. abdominalis. Neonates contained significantly greater protein mass than newly fertilised eggs. This result indicates that paternal protein transport to developing embryos occurs during H. abdominalis pregnancy. This study is the first to show paternal protein transport during pregnancy in seahorses, and furthers our understanding of paternal influence on embryonic development in male pregnant vertebrates.


Asunto(s)
Smegmamorpha , Animales , Humanos , Recién Nacido , Masculino , Smegmamorpha/genética , Australia , Desarrollo Embrionario , Padre
2.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35388432

RESUMEN

The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.


Asunto(s)
Lagartos , Viviparidad de Animales no Mamíferos , Animales , Evolución Biológica , Femenino , Genómica , Lagartos/genética , Mamíferos/fisiología , Placenta , Embarazo , Viviparidad de Animales no Mamíferos/genética
3.
Mol Ecol ; 29(7): 1315-1327, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32153075

RESUMEN

Our understanding of the evolution of complex biological traits is greatly advanced by examining taxa with intermediate phenotypes. The transition from oviparity (egg-laying) to viviparity (live-bearing) has occurred independently in many animal lineages, but there are few phenotypic intermediates. The lizard Saiphos equalis exhibits bimodal reproduction, with some viviparous populations, and other oviparous populations with long egg-retention, a rare trait where most of embryonic development occurs inside the mother prior to late ovipositioning. We posit that oviparous S. equalis represent an intermediate form between "true" oviparity and viviparity. We used transcriptomics to compare uterine gene expression in these two phenotypes, and provide a molecular model for the genetic control and evolution of reproductive mode. Many genes are differentially expressed throughout the reproductive cycle of both phenotypes, which have clearly different gene expression profiles overall. The differentially expressed genes within oviparous and viviparous individuals have broadly similar biological functions putatively important for sustaining embryos, including uterine remodelling, respiratory gas and water exchange, and immune regulation. These functional similarities indicate either that long egg-retention is an exaptation for viviparity, or might reflect parallel evolution of similar gravidity-related changes in gene expression in long egg-retention oviparity. In contrast, gene expression changes across the reproductive cycle of long egg-retaining oviparous S. equalis are dramatically different from those of "true" oviparous skinks (such as Lampropholis guichenoti), supporting our assertion that oviparous S. equalis exhibit an intermediate phenotype between "true" oviparity and viviparity.


Asunto(s)
Lagartos/genética , Lagartos/fisiología , Oviparidad/genética , Viviparidad de Animales no Mamíferos/genética , Animales , Evolución Biológica , Femenino , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , Nueva Gales del Sur , Transcriptoma
4.
BMC Ecol ; 20(1): 11, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070322

RESUMEN

BACKGROUND: Optimal foraging theory explains how animals make foraging decisions based on the availability, nutritional content, and handling times of different food types. Generalists solve this problem by consuming a variety of food types, and alter their diets with relative ease. Specialists eat few food types, and may starve if those food types are not available. We integrated stable isotope analyses with previously-published stomach contents and environmental data to investigate how the foraging ecologies of three sympatric freshwater turtle species vary across four wetlands that differ in turbidity and primary producer abundance. RESULTS: We found that the generalist Emydura macquarii consumes a varied diet (but mostly filamentous green algae) when primary producers are available and water is clear, but switches to a more carnivorous diet when the water is turbid and primary producers are scarce, following the predictions of optimal foraging theory. In contrast, two more-specialized carnivorous species, Chelodina expansa and Chelodina longicollis, do not differ in diet across wetlands, and interspecific competition may increase where E. macquarii is carnivorous. When forced to be more carnivorous, E. macquarii exhibits higher rates of empty stomachs, and female turtles have reduced body condition, but neither Chelodina species are affected. CONCLUSIONS: Our results provide support for optimal foraging theory, but also show that the ability to change diet does not protect the generalist from experiencing lower foraging success when its preferred food is rare, with direct consequences for their energy budgets. Our results have conservation implications because wetlands in the Murray-Darling river system are increasingly turbid and have low macrophyte abundance, and all three species are declining.


Asunto(s)
Tortugas , Animales , Dieta , Metabolismo Energético , Femenino , Agua Dulce , Humedales
5.
Ecol Appl ; 26(7): 1969-1983, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755718

RESUMEN

Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size.


Asunto(s)
Extinción Biológica , Zorros/fisiología , Especies Introducidas , Modelos Biológicos , Conducta Predatoria , Tortugas/fisiología , Animales , Australia , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Comportamiento de Nidificación , Óvulo , Dinámica Poblacional , Factores de Tiempo
6.
J Exp Zool B Mol Dev Evol ; 324(7): 636-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26055428

RESUMEN

The evolution of viviparity requires the development of mechanisms that facilitate transport of respiratory gases between mother and developing embryo. Of particular importance is maternal excretion of embryonic carbon dioxide (CO2 ), which increases as the embryo grows in size during development. The carbonic anhydrases are a family of enzymes that convert CO2 to bicarbonate for transport throughout the cardiovascular system and which may also be important for CO2 transport from embryo to mother. We used immunohistochemistry to localize carbonic anhydrase II in the placental tissues of a viviparous and highly placentotrophic lizard, Pseudemoia entrecasteauxii. Carbonic anhydrase II is localized in the uterine component of the paraplacentome, presumably to facilitate transport of embryonic CO2 to the mother. Carbonic anhydrase II is also localized in both the uterine and embryonic components of the placentome, a region heavily involved in placental nutrient transport rather than respiratory gas exchange. In contrast, carbonic anhydrase II is not present in the uterine or embryonic components of the omphaloplacenta, another region responsible for nutrient transport. While carbonic anhydrase II in the paraplacentomal uterus is likely to be responsible for embryo-maternal CO2 transport, the distribution of carbonic anhydrase II throughout the placentome indicates a different function. Instead of transporting embryonic CO2 , placentomal carbonic anhydrase II appears to be responsible for transporting CO2 produced by energetically expensive nutrient transport mechanisms in both the uterus and the embryo, which implies that the mechanisms of nutrient transport in the omphaloplacenta may not be as energetically expensive.


Asunto(s)
Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/metabolismo , Lagartos/metabolismo , Animales , Embrión no Mamífero , Femenino , Lagartos/embriología , Viviparidad de Animales no Mamíferos
7.
J Exp Zool B Mol Dev Evol ; 324(6): 493-503, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25732809

RESUMEN

To understand evolutionary transformations it is necessary to identify the character states of extinct ancestors. Ancestral character state reconstruction is inherently difficult because it requires an accurate phylogeny, character state data, and a statistical model of transition rates and is fundamentally constrained by missing data such as extinct taxa. We argue that model based ancestral character state reconstruction should be used to generate hypotheses but should not be considered an analytical endpoint. Using the evolution of viviparity and reversals to oviparity in squamates as a case study, we show how anatomical, physiological, and ecological data can be used to evaluate hypotheses about evolutionary transitions. The evolution of squamate viviparity requires changes to the timing of reproductive events and the successive loss of features responsible for building an eggshell. A reversal to oviparity requires that those lost traits re-evolve. We argue that the re-evolution of oviparity is inherently more difficult than the reverse. We outline how the inviability of intermediate phenotypes might present physiological barriers to reversals from viviparity to oviparity. Finally, we show that ecological data supports an oviparous ancestral state for squamates and multiple transitions to viviparity. In summary, we conclude that the first squamates were oviparous, that frequent transitions to viviparity have occurred, and that reversals to oviparity in viviparous lineages either have not occurred or are exceedingly rare. As this evidence supports conclusions that differ from previous ancestral state reconstructions, our paper highlights the importance of incorporating biological evidence to evaluate model-generated hypotheses.


Asunto(s)
Evolución Biológica , Lagartos/fisiología , Oviparidad/fisiología , Serpientes/fisiología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Femenino , Lagartos/anatomía & histología , Filogenia , Serpientes/anatomía & histología
8.
Environ Res ; 138: 38-48, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25682257

RESUMEN

In 2008 an impoundment retaining wall failed at the Tennessee Valley Authority's coal burning plant in Kingston, Tennessee, releasing large quantities of coal-fly ash into the Emory River. Following extensive remediation of the spill, we captured (in 2011 and 2012) gravid turtles of multiple species in three rivers (two impacted and one reference) within the vicinity of the spill to determine whether there was evidence of the spill influencing reproduction. There was little evidence that river of origin affected reproductive output, hatching success, hatchling size, or hatchling locomotor performance. Although hatching success and hatchling righting ability of pond sliders, Trachemys scripta, was higher in our reference river than in the Emory or Clinch River, respectively, these differences could not be attributed to differences in individual element concentrations in turtle tissues and effect sizes were relatively small. For example, hatching success was reduced by 11% in the spill zone compared to the reference river, an effect that is unlikely substantial enough to influence local population dynamics in light of turtle life history. Our results suggest that residual contamination that remains in the Emory-Clinch system after its remediation poses low risk of excessive element exposure and limited adverse reproductive effects to freshwater turtles. Future monitoring could reveal whether the observed reduction in hatching success gradually attenuates with time, or whether any long-term effects of chronic exposure to low-level contamination emerge over time.


Asunto(s)
Ceniza del Carbón/toxicidad , Exposición a Riesgos Ambientales , Tortugas/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Femenino , Masculino , Espectrometría de Masas , Reproducción/efectos de los fármacos , Ríos , Especificidad de la Especie , Tennessee , Tortugas/crecimiento & desarrollo
9.
Am Nat ; 184(2): 198-210, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25058280

RESUMEN

Mechanisms of reproductive allocation are major determinants of fitness because embryos cannot complete development without receiving sufficient nutrition from their parents. The nourishment of offspring via placentas (placentotrophy) has evolved repeatedly in vertebrates, including multiple times in squamate reptiles (lizards and snakes). Placentotrophy has been suggested to evolve only if food is sufficiently abundant throughout gestation to allow successful embryogenesis. If scarcity of food prevents successful embryogenesis, females should recoup nutrients allocated to embryos via abortion, reabsorption, and/or cannibalism. We tested these hypotheses in the placentotrophic southern grass skink Pseudemoia entrecasteauxii. We fed females one of four diets (high constant, high variable, low constant, and low variable) during gestation and tested the effects of both food amount and schedule of feeding on developmental success, cannibalism rate, placental nutrient transport, offspring size, and maternal growth and body condition. Low food availability reduced developmental success, placental nutrient transport, offspring size, and maternal growth and body condition. Cannibalism of offspring also increased when food was scarce. Schedule of feeding did not affect offspring or mothers. We suggest that high food abundance and ability to abort and cannibalize poor-quality offspring are permissive factors necessary for placentotrophy to be a viable strategy of reproductive allocation.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Evolución Biológica , Embrión no Mamífero/metabolismo , Lagartos/embriología , Placenta/fisiología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Canibalismo , Femenino , Lagartos/crecimiento & desarrollo , Embarazo
10.
Reproduction ; 147(1): R15-26, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24129151

RESUMEN

Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. Therefore, studies of the evolution of viviparity in squamates should inform hypotheses of the evolution of viviparity in all amniotes, including mammals.


Asunto(s)
Evolución Biológica , Placenta/fisiología , Reptiles/fisiología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Femenino , Humanos , Embarazo
11.
Conserv Physiol ; 12(1): coae033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803426

RESUMEN

Food availability determines the amount of energy animals can acquire and allocate to reproduction and other necessary functions. Female animals that are food limited thus experience reduced energy available for reproduction. When this occurs, females may reduce frequency of reproductive events or the number or size of offspring per reproductive bout. We assessed how maternal diet affects reproductive output in adult female Murray River short-necked turtles, Emydura macquarii, from four wetlands in Victoria. We previously found that turtle diets differ in the composition of plants and animals between our study wetlands. In this study, we tested whether differences in turtle diet composition (i.e. plants and animals) at these wetlands were associated with differences in clutch mass, individual egg mass, bulk egg composition and hatching success. We found total clutch mass increased with maternal body size at each site. At sites where filamentous green algae were scarce and E. macquarii were carnivorous, females produced smaller clutches relative to body size compared to females from sites where algae were abundant, and turtles were more herbivorous. Individual egg mass, bulk egg composition and hatching success did not differ across wetlands. Isotopic analysis revealed significant positive relationships between the carbon and nitrogen isotopes (δ13C, δ15N) of the eggs and those of the mothers, indicating that mothers allocated ratios of carbon and nitrogen isotopes to their eggs similar to those present in their tissues. Our study suggests that at sites where females are more carnivorous due to a relative absence of algae, females produce smaller clutches, but other aspects of their reproduction are not significantly impacted. The reduction in clutch size associated with differences in the availability of dietary plants and animals may have long-term consequences for E. macquarii and other freshwater turtle species that are experiencing population declines.

12.
Environ Sci Technol ; 47(23): 13763-71, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24180645

RESUMEN

In oviparous vertebrates, trace elements transfer from mother to offspring during egg production. For animals that produce eggs slowly, like turtles, the trace element concentration of each egg reflects an integration of dietary and stored accumulation over the duration of vitellogenesis. Because turtles also produce eggs synchronously, all eggs within a clutch should exhibit uniform trace element concentrations. In contrast, for animals that produce eggs in sequence and primarily from current dietary resources, like many birds, the trace element concentrations of eggs should be less uniform within a clutch, and likely reflect short-term changes in dietary exposure. We tested the hypothesis that stinkpot turtle (Sternotherus odoratus) clutches exhibit lower variability and higher repeatability in barium, selenium, strontium, and thallium concentrations than those of tree swallows (Tachycineta bicolor) from a site impacted by a recent coal ash spill. All four trace elements exhibited significantly lower variability and significantly higher repeatability in stinkpot clutches than in swallow clutches. Mean trace element concentrations of stinkpot eggs were also significantly higher than those of swallow eggs although both species feed primarily on aquatic invertebrates. Variability in swallow egg trace element concentrations was partially due to significant laying order effects. Our results support the hypothesis that interspecific variation in the source of resources and in the synchronicity and rate of egg production can lead to interspecific differences in the variability of egg trace element concentrations.


Asunto(s)
Ceniza del Carbón/química , Óvulo/metabolismo , Golondrinas/metabolismo , Oligoelementos/análisis , Tortugas/metabolismo , Animales , Reproducibilidad de los Resultados , Especificidad de la Especie , Tennessee
13.
Biomolecules ; 13(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671551

RESUMEN

The source of embryonic nutrition for development varies across teleost fishes. A parentotrophy index (ratio of neonate: ovulated egg dry mass) is often used to determine provisioning strategy, but the methodologies used vary across studies. The variation in source and preservation of tissue, staging of embryos, and estimation approach impedes our ability to discern between methodological and biological differences in parentotrophy indices inter- and intra-specifically. The threshold value used to distinguish between lecithotrophy and parentotrophy (0.6-1) differs considerably across studies. The lack of a standardised approach in definition and application of parentotrophy indices has contributed to inconsistent classifications of provisioning strategy. Consistency in both methodology used to obtain a parentotrophy index, and in the classification of provisioning strategy using a threshold value are essential to reliably distinguish between provisioning strategies in teleosts. We discuss alternative methods for determining parentotrophy and suggest consistent standards for obtaining and interpreting parentotrophy indices.


Asunto(s)
Estructuras Embrionarias , Peces , Animales
14.
J Exp Biol ; 215(Pt 5): 760-5, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22323198

RESUMEN

Viviparity and placentation have evolved from oviparity over 100 times in squamate reptiles (lizards and snakes). The independent origins of placentation have resulted in a variety of placental morphologies in different taxa, ranging from simple apposition of fetal and maternal tissues to endotheliochorial implantation that is homoplasious with mammalian placentation. Because the eggs of oviparous squamates transport gases and water from the environment and calcium from the eggshell, the placentae of viviparous squamates are thought to have initially evolved to accomplish these functions from within the maternal oviduct. Species with complex placentae have also been shown to rely substantially, or even primarily, on placental transport of organic nutrients for embryonic nutrition. However, it is unclear whether species with only simple placentae are also capable of transporting organic nutrients to offspring. Among viviparous squamates, all of the snakes that have been studied thus far have been shown to have simple placentae. However, most studies of snake placentation are limited to a single lineage, the North American Natricinae. We tested the abilities of four species of viviparous snakes - Agkistrodon contortrix (Viperidae), Boa constrictor (Boidae), Nerodia sipedon (Colubridae: Natricinae) and Thamnophis sirtalis (Colubridae: Natricinae) - to transport diet-derived amino acids to offspring during gestation. We fed [(15)N]leucine to pregnant snakes, and compared offspring (15)N content with that of unlabeled controls. Labeled females allocated significantly more (15)N to offspring than did controls, but (15)N allocation did not differ among species. Our results indicate that viviparous snakes are capable of transporting diet-derived amino acids to their offspring during gestation, possibly via placentation.


Asunto(s)
Aminoácidos/metabolismo , Serpientes/embriología , Serpientes/metabolismo , Viviparidad de Animales no Mamíferos , Animales , Transporte Biológico , Femenino , Masculino , Isótopos de Nitrógeno/análisis
15.
Biol Rev Camb Philos Soc ; 97(3): 1179-1192, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35098647

RESUMEN

How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.


Asunto(s)
Lagartos , Viviparidad de Animales no Mamíferos , Animales , Evolución Biológica , Lagartos/genética , Oviparidad/genética , Reproducción/genética , Serpientes , Viviparidad de Animales no Mamíferos/genética
16.
J Comp Physiol B ; 192(2): 263-273, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35118516

RESUMEN

Shark placentae are derived from modifications to the fetal yolk sac and the maternal uterine mucosa. In almost all placental sharks, embryonic development occurs in an egg capsule that remains intact for the entire pregnancy, separating the fetal tissues from the maternal tissues at the placental interface. Here, we investigate the structure and permeability of the egg capsules that surround developing embryos of the placental Australian sharpnose shark (Rhizoprionodon taylori) during late pregnancy. The egg capsule is an acellular fibrous structure that is 0.42 ± 0.04 µm thick at the placental interface between the yolk sac and uterine tissues, and 0.67 ± 0.08 µm thick in the paraplacental regions. This is the thinnest egg capsule of any placental shark measured so far, which may increase the diffusion rate of respiratory gases, fetal wastes, water and nutrients between maternal and fetal tissues. Molecules smaller than or equal to ~ 1000 Da can diffuse through the egg capsule, but larger proteins (~ 3000-26,000 Da) cannot. Similar permeability characteristics between the egg capsule of R. taylori and other placental sharks suggest that molecular size is an important determinant of the molecules that can be exchanged between the mother and her embryos during pregnancy.


Asunto(s)
Tiburones , Animales , Australia , Femenino , Permeabilidad , Placenta , Embarazo , Tiburones/fisiología , Saco Vitelino
17.
Artículo en Inglés | MEDLINE | ID: mdl-21884815

RESUMEN

Reproductive effort has been defined as the proportion of an organism's energy budget that is allocated to reproduction over a biologically meaningful time period. Historically, studies of reproductive bioenergetics considered energy content of gametes, but not costs of gamete production. Although metabolic costs of vitellogenesis (MCV) fundamentally reflect the primary bioenergetic cost of reproductive allocation in female reptiles, the few investigations that have considered costs of reproductive allocation have focused on metabolic costs of pregnancy (MCP) in viviparous species. We define MCP as energetic costs incurred by pregnant females, including all costs of maintaining gestation conditions necessary for embryogenesis. MCP by our definition do not include fetal costs of embryogenesis. We measured metabolic rates in five species of viviparous snakes (Agkistrodon contortrix, Boa constrictor, Eryx colubrinus, Nerodia sipedon, and Thamnophis sirtalis) during vitellogenesis and pregnancy in order to estimate MCV and MCP. Across all species, MCV were responsible for 30% increases in maternal metabolism. Phylogenetically-independent contrasts showed that MCV were significantly greater in B. constrictor than in other species, likely because B. constrictor yolk energy content was greater than that of other species. Estimates of MCP were not significantly different from zero in any species. In viviparous snakes, MCV appear to represent significant bioenergetic expenditures, while MCP do not. We suggest that MCV, together with yolk energy content, represent the most significant component of reptilian reproductive effort, and therefore deserve greater attention than MCP in studies of reptilian reproductive bioenergetics.


Asunto(s)
Metabolismo Energético/fisiología , Reproducción/fisiología , Serpientes/fisiología , Vitelogénesis/fisiología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Boidae/metabolismo , Boidae/fisiología , Estradiol/metabolismo , Femenino , Progesterona/metabolismo , Reptiles/metabolismo , Reptiles/fisiología , Serpientes/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-20826221

RESUMEN

We examined functions of residual yolk (RY) in hatchling Smooth Softshell Turtles (Apalone mutica). Removal of RY did not affect survival, shell growth, or resting metabolic rates of turtles for 40 d after hatching. Our estimates of metabolic rate suggest that RY can fuel maintenance and activity metabolism for approximately 25 days. A. mutica absorb more than 1g of water in the first 2 weeks of life, which appears to be the basis of post-hatch shell expansion rather than yolk-provisioned growth. Post-hatch growth may be limited by the magnitude of RY remaining at hatching, but RY protein and lipid proportions do not differ from those of freshly-laid eggs. In addition, A. mutica did not use RY to fuel nest emergence. Our results suggest that RY does not fulfill several hypothetical functions in A. mutica, including postnatal growth, catabolic fuel for nest emergence, and long-term nutritional sustenance for maintenance, activity, or hibernation. Instead, A. mutica appear to absorb most yolk prior to hatching, and are left with a minimum of RY. Variation in RY mass with incubation regime in other species suggests that mothers may overprovision their eggs to ensure successful development across a diversity of possible incubation conditions.


Asunto(s)
Yema de Huevo/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Metabolismo Energético , Tortugas/crecimiento & desarrollo , Tortugas/metabolismo , Animales , Animales Recién Nacidos , Cáscara de Huevo/crecimiento & desarrollo , Cáscara de Huevo/metabolismo , Especificidad de la Especie , Tortugas/embriología
19.
Placenta ; 108: 11-22, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33780667

RESUMEN

INTRODUCTION: Viviparity (live-birth) has evolved from oviparity (egg-laying) multiple times in sharks. While most transitions from oviparity to viviparity have resulted in non-placental forms of viviparity, some sharks develop a yolk sac placenta during pregnancy. The Australian sharpnose shark (Rhizoprionodon taylori) is a placental species that suspends embryonic development in a diapause for most of pregnancy. METHODS: To identify structures involved in supporting rapid embryonic growth in late pregnancy, we examined uterine and placental morphology by light and electron microscopy. RESULTS: Paraplacental uterine regions have morphological specialisations consistent with secretion and fluid transport between uterine tissues and the lumen. Uterine secretions in the lumen may be absorbed by the outgrowths on the embryonic umbilical cord ('appendiculae'), which are densely covered by microvilli. The placenta consists of uterine villi that interdigitate with the yolk sac and enhance the surface area available for fetomaternal exchange. The yolk sac does not invade the uterine epithelium, and the egg capsule remains intact at the placental interface, separating maternal and fetal tissues. Some placental uterine epithelial cells are secretory, and endocytic vesicles in the opposing yolk sac ectodermal cells suggest that nutrient transport is by histotrophic uterine secretion followed by fetal absorption. Respiratory gases, water and possibly small nutrients likely diffuse across the placenta, where maternal and fetal blood vessels are ~2 µm apart. DISCUSSION: Placental structure in R. taylori is similar to most other sharks, but there are differences in cellular structures between species that may indicate species-specific placental transport mechanisms.


Asunto(s)
Tiburones/anatomía & histología , Útero/ultraestructura , Viviparidad de Animales no Mamíferos , Saco Vitelino/ultraestructura , Animales , Femenino
20.
J Comp Physiol B ; 190(5): 547-556, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32617716

RESUMEN

Vertebrates that incubate embryos on or within the body cavity exhibit diverse strategies to provide nutrients to developing embryos, ranging from lecithotrophy (solely yolk-provided nutrition) to substantial matrotrophy (supplemental nutrients from the mother before birth). Syngnathid fishes (seahorses, pipefishes and sea dragons) are the only vertebrates to exhibit male pregnancy. Therefore, they provide a unique opportunity for comparative evolutionary research, in examining pregnancy independent of the female reproductive tract. Here, we tested the hypothesis that the most complex form of syngnathid pregnancy involves nutrient transport from father to offspring. We compared the dry masses of newly fertilised Hippocampus abdominalis eggs with those of fully developed neonates to derive a patrotrophy index. The patrotrophy index of H. abdominalis was 1, indicating paternal nutrient supplementation to embryos during gestation. We also measured the lipid content of newly fertilised eggs and neonates and found that there was no significant decrease in lipid mass during embryonic development. Since lipids are likely to be the main source of energy during embryonic development, our results suggest that lipid yolk reserves being depleted by embryonic metabolism are replaced by the brooding father. The results of our study support the hypothesis that nutrient transport occurs in the most advanced form of male pregnancy in vertebrates.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Conducta Paterna , Fenómenos Fisiológicos Reproductivos , Smegmamorpha/fisiología , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA