Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(3): 1330-1338, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31900367

RESUMEN

A rational design of an electrocatalyst presents a promising avenue for solar fuels synthesis from carbon dioxide (CO2) fixation but is extremely challenging. Herein, we use density functional theory calculations to study an inexpensive binary copper-iron catalyst for photoelectrochemical CO2 reduction toward methane. The calculations of reaction energetics suggest that Cu and Fe in the binary system can work in synergy to significantly deform the linear configuration of CO2 and reduce the high energy barrier by stabilizing the reaction intermediates, thus spontaneously favoring CO2 activation and conversion for methane synthesis. Experimentally, the designed CuFe catalyst exhibits a high current density of -38.3 mA⋅cm-2 using industry-ready silicon photoelectrodes with an impressive methane Faradaic efficiency of up to 51%, leading to a distinct turnover frequency of 2,176 h-1 under air mass 1.5 global (AM 1.5G) one-sun illumination.

2.
Nano Lett ; 22(6): 2236-2243, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258977

RESUMEN

Tuning the surface structure of the photoelectrode provides one of the most effective ways to address the critical challenges in artificial photosynthesis, such as efficiency, stability, and product selectivity, for which gallium nitride (GaN) nanowires have shown great promise. In the GaN wurtzite crystal structure, polar, semipolar, and nonpolar planes coexist and exhibit very different structural, electronic, and chemical properties. Here, through a comprehensive study of the photoelectrochemical performance of GaN photocathodes in the form of films and nanowires with controlled surface polarities we show that significant photoelectrochemical activity can be observed when the nonpolar surfaces are exposed in the electrolyte, whereas little or no activity is measured from the GaN polar c-plane surfaces. The atomic origin of this fundamental difference is further revealed through density functional theory calculations. This study provides guideline on crystal facet engineering of metal-nitride photo(electro)catalysts for a broad range of artificial photosynthesis chemical reactions.


Asunto(s)
Galio , Nanoestructuras , Nanocables , Catálisis , Galio/química , Nanoestructuras/química , Nanocables/química
3.
Nat Mater ; 20(8): 1130-1135, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33820963

RESUMEN

Development of an efficient yet durable photoelectrode is of paramount importance for deployment of solar-fuel production. Here, we report the photoelectrochemically self-improving behaviour of a silicon/gallium nitride photocathode active for hydrogen production with a Faradaic efficiency approaching ~100%. By using a correlative approach based on different spectroscopic and microscopic techniques, as well as density functional theory calculations, we provide a mechanistic understanding of the chemical transformation that is the origin of the self-improving behaviour. A thin layer of gallium oxynitride forms on the side walls of the gallium nitride grains, via a partial oxygen substitution at nitrogen sites, and displays a higher density of catalytic sites for the hydrogen-evolving reaction. This work demonstrates that the chemical transformation of gallium nitride into gallium oxynitride leads to sustained operation and enhanced catalytic activity, thus showing promise for oxynitride layers as protective catalytic coatings for hydrogen evolution.

4.
Nano Lett ; 18(10): 6530-6537, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30216079

RESUMEN

Photoelectrochemical water splitting is a clean and environmentally friendly method for solar hydrogen generation. Its practical application, however, has been limited by the poor stability of semiconductor photoelectrodes. In this work, we demonstrate the use of GaN nanostructures as a multifunctional protection layer for an otherwise unstable, low-performance photocathode. The direct integration of GaN nanostructures on n+-p Si wafer not only protects Si surface from corrosion but also significantly reduces the charge carrier transfer resistance at the semiconductor/liquid junction, leading to long-term stability (>100 h) at a large current density (>35 mA/cm2) under 1 sun illumination. The measured applied bias photon-to-current efficiency of 10.5% is among the highest values ever reported for a Si photocathode. Given that both Si and GaN are already widely produced in industry, our studies offer a viable path for achieving high-efficiency and highly stable semiconductor photoelectrodes for solar water splitting with proven manufacturability and scalability.

5.
J Am Chem Soc ; 140(25): 7869-7877, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29905471

RESUMEN

Photoelectrochemical (PEC) reduction of CO2 with H2O not only provides an opportunity for reducing net CO2 emissions but also produces value-added chemical feedstocks and fuels. Syngas, a mixture of CO and H2, is a key feedstock for the production of methanol and other commodity hydrocarbons in industry. However, it is challenging to achieve efficient and stable PEC CO2 reduction into syngas with controlled composition owing to the difficulties associated with the chemical inertness of CO2 and complex reaction network of CO2 conversion. Herein, by employing a metal/oxide interface to spontaneously activate CO2 molecule and stabilize the key reaction intermediates, we report a benchmarking solar-to-syngas efficiency of 0.87% and a high turnover number of 24 800, as well as a desirable high stability of 10 h. Moreover, the CO/H2 ratios in the composition can be tuned in a wide range between 4:1 and 1:6 with a total unity Faradaic efficiency. On the basis of experimental measurements and theoretical calculations, we present that the metal/oxide interface provides multifunctional catalytic sites with complementary chemical properties for CO2 activation and conversion, leading to a unique pathway that is inaccessible with the individual components. The present approach opens new opportunities to rationally develop high-performance PEC systems for selective CO2 reduction into valuable carbon-based chemicals and fuels.

6.
Phys Chem Chem Phys ; 19(43): 29653-29659, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29085927

RESUMEN

The addition of a co-catalyst onto the surface of a photocathode often greatly enhances the harvested photovoltage of the system. However, the true nature of how the catalyst improves the onset potential remains poorly understood. As a result, how to best utilize effective co-catalysts is still a limiting factor in achieving high performance earth abundant photoelectrochemical hydrogen evolution. Using intensity modulated photocurrent spectroscopy (IMPS), we have probed charge behaviors at the photoelectrode co-catalyst interface. We find that Pt drastically reduces charge recombination at the semiconductor liquid interface (SCLI). Further studies reveal that the onset potentials can be improved either by accelerating the reaction kinetics or reducing the recombination at the SCLI. The knowledge permits us to understand how earth abundant HER catalysts, such as CoP, behave at the SCLI. It is found that CoP is more effective at accelerating the reaction kinetics than reducing recombination.

7.
Angew Chem Int Ed Engl ; 56(30): 8701-8705, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28598586

RESUMEN

In many heterogeneous catalysts, the interaction of supported metal species with a matrix can alter the electronic and morphological properties of the metal and manipulate its catalytic properties. III-nitride semiconductors have a unique ability to stabilize ultra-small ruthenium (Ru) clusters (ca. 0.8 nm) at a high loading density up to 5 wt %. n-Type III-nitride nanowires decorated with Ru sub-nanoclusters offer controlled surface charge properties and exhibit superior UV- and visible-light photocatalytic activity for ammonia synthesis at ambient temperature. A metal/semiconductor interfacial Schottky junction with a 0.94 eV barrier height can greatly facilitate photogenerated electron transfer from III-nitrides to Ru, rendering Ru an electron sink that promotes N≡N bond cleavage, and thereby achieving low-temperature ammonia synthesis.

8.
Nat Commun ; 14(1): 1013, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823177

RESUMEN

The sustainable production of chemicals and fuels from abundant solar energy and renewable carbon sources provides a promising route to reduce climate-changing CO2 emissions and our dependence on fossil resources. Here, we demonstrate solar-powered formate production from readily available biomass wastes and CO2 feedstocks via photoelectrochemistry. Non-precious NiOOH/α-Fe2O3 and Bi/GaN/Si wafer were used as photoanode and photocathode, respectively. Concurrent photoanodic biomass oxidation and photocathodic CO2 reduction towards formate with high Faradaic efficiencies over 85% were achieved at both photoelectrodes. The integrated biomass-CO2 photoelectrolysis system reduces the cell voltage by 32% due to the thermodynamically favorable biomass oxidation over conventional water oxidation. Moreover, we show solar-driven formate production with a record-high yield of 23.3 µmol cm-2 h-1 as well as high robustness using the hybrid photoelectrode system. The present work opens opportunities for sustainable chemical and fuel production using abundant and renewable resources on earth-sunlight, biomass and CO2.

9.
Nat Commun ; 14(1): 2047, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041153

RESUMEN

Solar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations. Measurements in both three- and two-electrode configurations suggest that surfaces of the GaN nanowires on Si photocathode transform in situ into Ga-O-N that drastically enhances hydrogen evolution and remains stable for 3,000 hrs. First principles calculations further revealed that the in-situ Ga-O-N species exhibit atomic-scale surface metallization. This study overcomes the conventional dilemma between efficiency and stability imposed by extrinsic cocatalysts, offering a path for practical application of photoelectrochemical devices and systems for clean energy.

10.
Nanoscale ; 13(17): 8163-8173, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33881116

RESUMEN

To pave the way for InGaN-on-Si integrated photovoltaics, uniform and close-packed n-GaN/(Al)InGaN/p-GaN nanowire (NW) arrays with a ∼0.29 µm thick absorption segment of ∼2.35 eV energy bandgap were fabricated on a Si substrate using Ti-mask selective area growth (SAG) in a molecular beam epitaxy (MBE) chamber. Instead of using thick and insulting buffer layers, this SAG process was realized by employing a 3 nm AlN/GaN: Ge buffer layer to facilitate electrical and thermal conduction between NWs and Si. Scanning transmission electron microscopy and high-resolution electron energy loss spectroscopy mapping revealed the discontinuities of AlN and the embedments of GaN:Ge which contribute to a negligible resistance of the NWs-on-Si interface. AlInGaN active segment exhibits core-shell structures, which suppress nonradiative surface recombination at NW surfaces. Working of AlInGaN core-shell NW solar cells was demonstrated with improved open-circuit voltage (Voc) and higher energy conversion efficiency (η) than those reported for InGaN NW solar cells. Stable output characteristics including the Voc of 1.41 V and η of 2.46% were obtained under 30-Sun illuminations. Such NWs-on-Si devices use Si substrate as the bottom electrode. With a low series resistance of ∼1 Ω, this work paves the way to monolithically integrate MBE-SAG III-nitride devices and Si-based electronics, such as Si solar cells and CMOS devices.

11.
iScience ; 23(10): 101613, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33089102

RESUMEN

The carbon-free production of hydrogen from water splitting holds grand promise for the critical energy and environmental challenges. Herein, few-atomic-layers iron (FeFAL) anchored on GaN nanowire arrays (NWs) is demonstrated as a highly active hydrogen evolution reaction catalyst, attributing to the spatial confinement and the nitrogen-terminated surface of GaN NWs. Based on density functional theory calculations, the hydrogen adsorption on FeFAL:GaN NWs is found to exhibit a significantly low free energy of -0.13 eV, indicative of high activity. Meanwhile, its outstanding optoelectronic properties are realized by the strong electronic coupling between atomic iron layers and GaN(10i0) together with the nearly defect-free GaN NWs. As a result, FeFAL:GaN NWs/n+-p Si exhibits a prominent current density of ∼ -30 mA cm-2 at an overpotential of ∼0.2 V versus reversible hydrogen electrode with a decent onset potential of +0.35 V and 98% Faradaic efficiency in 0.5 mol/L KHCO3 aqueous solution under standard one-sun illumination.

12.
Nat Commun ; 9(1): 3856, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242212

RESUMEN

The combination of earth-abundant catalysts and semiconductors, for example, molybdenum sulfides and planar silicon, presents a promising avenue for the large-scale conversion of solar energy to hydrogen. The inferior interface between molybdenum sulfides and planar silicon, however, severely suppresses charge carrier extraction, thus limiting the performance. Here, we demonstrate that defect-free gallium nitride nanowire is ideally used as a linker of planar silicon and molybdenum sulfides to produce a high-quality shell-core heterostructure. Theoretical calculations revealed that the unique electronic interaction and the excellent geometric-matching structure between gallium nitride and molybdenum sulfides enabled an ideal electron-migration channel for high charge carrier extraction efficiency, leading to outstanding performance. A benchmarking current density of 40 ± 1 mA cm-2 at 0 V vs. reversible hydrogen electrode, the highest value ever reported for a planar silicon electrode without noble metals, and a large onset potential of +0.4 V were achieved under standard one-sun illumination.

13.
Adv Mater ; 29(26)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28464392

RESUMEN

Solar rechargeable battery combines the advantages of photoelectrochemical devices and batteries and has emerged as an attractive alternative to artificial photosynthesis for large-scale solar energy harvesting and storage. Due to the low photovoltages by the photoelectrodes, however, most previous demonstrations of unassisted photocharge have been realized on systems with low open circuit potentials (<0.8 V). In response to this critical challenge, here it is shown that the combined photovoltages exceeding 1.4 V can be obtained using a Ta3 N5 nanotube photoanode and a GaN nanowire/Si photocathode with high photocurrents (>5 mA cm-2 ). The photoelectrode system makes it possible to operate a 1.2 V alkaline anthraquinone/ferrocyanide redox battery with a high ideal solar-to-chemical conversion efficiency of 3.0% without externally applied potentials. Importantly, the photocharged battery is successfully discharged with a high voltage output.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA