Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731806

RESUMEN

This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.


Asunto(s)
Halógenos , Electricidad Estática , Halógenos/química , Modelos Moleculares , Teoría Cuántica , Electrones , Termodinámica , Bases de Lewis/química , Halogenación
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445738

RESUMEN

The structural stability of the extensively studied organic-inorganic hybrid methylammonium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3+; Tt = Ge, Sn, Pb; X = Cl, Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3+) and an inorganic anion (TtX3-). However, the basic understanding of the underlying chemical bonding interactions in these systems that link the ionic moieties together in complex configurations is still limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the repeating units of periodic crystal systems and density functional theory simulations were performed to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not only the charge-assisted N-H···X and C-H···X hydrogen bonds but also the C-N···X pnictogen bonds interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions, which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic moieties (TtX3-) together. We have demonstrated that each Tt in each [CH3NH3+•TtX3-] ion pair has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3- units, thus causing the emergence of an infinite array of 3D TtX64- octahedra in the crystalline phase. The TtX44- octahedra are corner-shared to form cage-like inorganic frameworks that host the organic cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding optoelectronic properties in the solid state. We harnessed the results using the quantum theory of atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent gradient models to validate these conclusions.


Asunto(s)
Hidrógeno , Óxidos , Modelos Moleculares
3.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047632

RESUMEN

The ion pairs [Cs+•TtX3-] (Tt = Pb, Sn, Ge; X = I, Br, Cl) are the building blocks of all-inorganic cesium tetrel halide perovskites in 3D, CsTtX3, that are widely regarded as blockbuster materials for optoelectronic applications such as in solar cells. The 3D structures consist of an anionic inorganic tetrel halide framework stabilized by the cesium cations (Cs+). We use computational methods to show that the geometrical connectivity between the inorganic monoanions, [TtX3-]∞, that leads to the formation of the TtX64- octahedra and the 3D inorganic perovskite architecture is the result of the joint effect of polarization and coulombic forces driven by alkali and tetrel bonds. Depending on the nature and temperature phase of these perovskite systems, the Tt···X tetrel bonds are either indistinguishable or somehow distinguishable from Tt-X coordinate bonds. The calculation of the potential on the electrostatic surface of the Tt atom in molecular [Cs+•TtX3-] provides physical insight into why the negative anions [TtX3-] attract each other when in close proximity, leading to the formation of the CsTtX3 tetrel halide perovskites in the solid state. The inter-molecular (and inter-ionic) geometries, binding energies, and charge density-based topological properties of sixteen [Cs+•TtX3-] ion pairs, as well as some selected oligomers [Cs+•PbI3-]n (n = 2, 3, 4), are discussed.


Asunto(s)
Compuestos de Calcio , Compuestos Inorgánicos , Cesio , Semiconductores
4.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163185

RESUMEN

Layered two-dimensional transition metal dichalcogenides and their heterostructures are of current interest, owing to the diversity of their applications in many areas of materials nanoscience and technologies. With this in mind, we have examined the three molecular dimers of the tungsten dichalcogenide series, (WCh2)2 (Ch = S, Se, Te), using density functional theory to provide insight into which interactions, and their specific characteristics, are responsible for the interfacial/interlayer region in the room temperature 2H phase of WCh2 crystals. Our calculations at various levels of theory suggested that the Te···Te chalcogen bonding in (WTe2)2 is weak, whereas the Se···Se and S···S bonding interactions in (WSe2)2 and (WS2)2, respectively, are of the van der Waals type. The presence and character of Ch···Ch chalcogen bonding interactions in the dimers of (WCh2)2 are examined with a number of theoretical approaches and discussed, including charge-density-based approaches, such as the quantum theory of atoms in molecules, interaction region indicator, independent gradient model, and reduced density gradient non-covalent index approaches. The charge-density-based topological features are shown to be concordant with the results that originate from the extrema of potential on the electrostatic surfaces of WCh2 monomers. A natural bond orbital analysis has enabled us to suggest a number of weak hyperconjugative charge transfer interactions between the interacting monomers that are responsible for the geometry of the (WCh2)2 dimers at equilibrium. In addition to other features, we demonstrate that there is no so-called van der Waals gap between the monolayers in two-dimensional layered transition metal tungsten dichalcogenides, which are gapless, and that the (WCh2)2 dimers may be prototypes for a basic understanding of the physical chemistry of the chemical bonding environments associated with the local interfacial/interlayer regions in layered 2H-WCh2 nanoscale systems.


Asunto(s)
Calcógenos/química , Compuestos de Tungsteno/química , Tungsteno/química , Calcógenos/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Teoría Cuántica , Electricidad Estática , Elementos de Transición , Compuestos de Tungsteno/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955945

RESUMEN

The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel functional materials. Its bonding modes, energy profiles, vibrational structures and charge density topologies, among others, have yet to be comprehensively delineated, both theoretically and experimentally. In this overview, attention is largely centered on the nature of nitrogen-centered pnictogen bonds found in organic-inorganic hybrid metal halide perovskites and closely related structures deposited in the Cambridge Structural Database (CSD) and the Inorganic Chemistry Structural Database (ICSD). Focusing on well-characterized structures, it is shown that it is not merely charge-assisted hydrogen bonds that stabilize the inorganic frameworks, as widely assumed and well-documented, but simultaneously nitrogen-centered pnictogen bonding, and, depending on the atomic constituents of the organic cation, other non-covalent interactions such as halogen bonding and/or tetrel bonding, are also contributors to the stabilizing of a variety of materials in the solid state. We have shown that competition between pnictogen bonding and other interactions plays an important role in determining the tilting of the MX6 (X = a halogen) octahedra of metal halide perovskites in one, two and three-dimensions. The pnictogen interactions are identified to be directional even in zero-dimensional crystals, a structural feature in many engineered ordered materials; hence an interplay between them and other non-covalent interactions drives the structure and the functional properties of perovskite materials and enabling their application in, for example, photovoltaics and optoelectronics. We have demonstrated that nitrogen in ammonium and its derivatives in many chemical systems acts as a pnictogen bond donor and contributes to conferring stability, and hence functionality, to crystalline perovskite systems. The significance of these non-covalent interactions should not be overlooked, especially when the focus is centered on the rationale design and discovery of such highly-valued materials.


Asunto(s)
Compuestos de Calcio , Óxidos , Compuestos de Calcio/química , Halógenos/química , Nitrógeno , Óxidos/química , Titanio
6.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563065

RESUMEN

A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the same molecular entity. This is a pnictogen bond and are likely formed by the elements of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. This overview describes a set of illustrative crystal systems that were stabilized (at least partially) by means of stibium bonds, together with other non-covalent interactions (such as hydrogen bonds and halogen bonds), retrieved from either the Cambridge Structure Database (CSD) or the Inorganic Crystal Structure Database (ICSD). We demonstrate that these databases contain hundreds of crystal structures of various dimensions in which covalently or coordinately bound antimony atoms in molecular entities feature positive sites that productively interact with various Lewis bases containing O, N, F, Cl, Br, and I atoms in the same or different molecular entities, leading to the formation of stibium bonds, and hence, being partially responsible for the stability of the crystals. The geometric features, pro-molecular charge density isosurface topologies, and extrema of the molecular electrostatic potential model were collectively examined in some instances to illustrate the presence of Sb-centered pnictogen bonding in the representative crystal systems considered.


Asunto(s)
Antimonio , Halógenos , Halógenos/química , Enlace de Hidrógeno , Modelos Moleculares , Electricidad Estática
7.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500544

RESUMEN

Twenty-five molecule-anion complex systems [I4Tt···X-] (Tt = C, Si, Ge, Sn and Pb; X = F, Cl, Br, I and At) were examined using density functional theory (ωB97X-D) and ab initio (MP2 and CCSD) methods to demonstrate the ability of the tetrel atoms in molecular entities, I4Tt, to recognize the halide anions when in close proximity. The tetrel bond strength for the [I4C···X-] series and [I4Tt···X-] (Tt = Si, Sn; X = I, At), was weak-to-moderate, whereas that in the remaining 16 complexes was dative tetrel bond type with very large interaction energies and short Tt···X close contact distances. The basis set superposition error corrected interaction energies calculated with the highest-level theory applied, [CCSD(T)/def2-TZVPPD], ranged from -3.0 to -112.2 kcal mol-1. The significant variation in interaction energies was realized as a result of different levels of tetrel bonding environment between the interacting partners at the equilibrium geometries of the complex systems. Although the ωB97X-D computed intermolecular geometries and interaction energies of a majority of the [I4Tt···X-] complexes were close to those predicted by the highest level of theory, the MP2 results were shown to be misleading for some of these systems. To provide insight into the nature of the intermolecular chemical bonding environment in the 25 molecule-anion complexes investigated, we discussed the charge-density-based topological and isosurface features that emanated from the application of the quantum theory of atoms in molecules and independent gradient model approaches, respectively.


Asunto(s)
Teoría Cuántica , Termodinámica , Modelos Moleculares , Aniones
8.
Molecules ; 27(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684359

RESUMEN

In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system's crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene's π system), thus providing insight into the typical nature of As···D interaction distances and ∠R-As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.


Asunto(s)
Arsénico , Halógenos/química , Enlace de Hidrógeno
9.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268588

RESUMEN

The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization.

10.
Phys Chem Chem Phys ; 22(42): 24337-24350, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33063074

RESUMEN

We have theoretically examined the geometries, electronic density of states and band structures of cubic and hexagonal A2AgCrCl6 (A = Cs, Rb, K, Na, Li) using meta-GGA SCAN-rVV10. The optimized lattice density was found to vary between 2.68 and 4.08 g cm-3 for cubic-A2AgCrCl6, with the fundamental electronic bandgap (direct) in the range of 0.66-0.69 eV. The cell density of hexagonal A2AgCrCl6 was between 2.97 and 3.93 g cm-3, but with an indirect bandgap of 0.93-1.02 eV. The valence band maximum and the conduction band minimum of A2AgCrCl6 were confirmed to be essentially of Cr(3d) character, but the contributions from the orbital states of Cl(3p) to the VBM were also appreciable. Cubic A2AgCrCl6 (A = Cs, Rb, K) was identified to possess genuine perovskite stoichiometry, evaluated using various geometry-based indices (viz. octahedral factor, tolerance factor, and global instability index). This was not so for A2AgCrCl6 (A = Na, Li), and was due to the small size of Na and Li cations that caused the critical strain of CrCl6 octahedra and a significant decrease in the cell volume. However, all the five A2AgCrCl6 displayed nearly similar optical properties, including the nature of the oscillator peaks in the dielectric function, absorption coefficient, photoconductivity, reflectivity, and Tauc spectra. The zero-limit of the refractive index was calculated around 2.25 and 2.00 for cubic and hexagonal A2AgCrCl6, respectively, and the extinction coefficient was very small for all cases. The nature of the optical bandgap and transition peaks discussed in this study of cubic and hexagonal Cs2AgCrCl6 agreed well with the experiment. The examination of phonon band dispersion led to the conclusion that cubic-A2AgCrCl6 (A = Cs, Rb) are the only halide double perovskites of the entire series that are dynamically stable.

11.
J Comput Chem ; 40(20): 1836-1860, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31017721

RESUMEN

The wide occurrence of halogen-centered noncovalent interactions in crystal growth and design prompted this study, which includes a mini review of recent advances in the field. Particular emphasis is placed on providing compelling theoretical evidence of the formation of these interactions between sites of positive electrostatic potential, as well as between sites of negative electrostatic potential, localized on the electrostatic surfaces of the bound fluorine atoms in a prototypical system, hexafluoropropylene (C3 F6 ), upon its interaction with another same molecule to form (C3 F6 )2 dimers. The existence of σ- and π-hole interactions is shown for the stable dimers. Even so, weakly bound interactions locally responsible in holding the molecular fragments together cannot and should not be overlooked since they are partly responsible for determining the overall geometry of the crystal. The results of combined quantum theory of atoms in molecules, molecular electrostatic surface potential, and reduced density gradient noncovalent interaction analyses showed that these latter interactions do indeed play a role in the stability and growth of crystalline C3 F6 itself and the (C3 F6 )2 dimers. A symmetry adapted perturbation theory energy decomposition analysis leads to the conclusion that a great majority of the (C3 F6 )2 dimers examined are the consequence of dispersion (and electrostatics), with nonnegligible contribution from polarization, which together competes with an exchange repulsion component to determine the equilibrium geometries. In a few structures of the (C3 F6 )2 dimer, the fluorine is found to serve as a six-center five-bond donor/acceptor, as found for carbon in other systems (Malischewski and Seppelt, Angew. Chem. Int. Ed. 2017, 56, 368). © 2019 Wiley Periodicals, Inc.

12.
Phys Chem Chem Phys ; 21(36): 19969-19986, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31478046

RESUMEN

Several recent studies have shown that chalcogen bonds originate from the σ-holes localized on the electron-deficient surface of the Group 16 atoms (sulfur, selenium and tellurium) in molecules; however, the oxygen atom in molecules does not appear to form such a bond. In this study, we have considered oxygen difluoride (OF2) as a prototypical Lewis acid, and 11 Lewis bases as partner interacting species (CH3F, CH3Cl, CH3Br, H2CO, HFCO, HF, SO, CH3CN, PN, HSCN and HCN). Their complexes are examined using DFT-M06-2X and ab initio first-principles calculations at the MP2 level of theory, in conjunction with Dunning's all-electron correlated basis set aug-cc-pVTZ. The results that emerge from the equilibrium geometries, molecular electrostatic surface potential, second order natural bond orbital, quantum theory of atoms in molecules, reduced density gradient and independent gradient model noncovalent analyses tools, as well as from binding energy calculations, demonstrate that oxygen is indeed capable of forming a chalcogen bond. We show that the σ-holes on O along the F-O bond extensions in OF2 are positive, and can readily participate in chalcogen bonding (and other secondary interactions) with Lewis bases, thus providing stability to the geometries of all the 12 binary complexes examined. Finally, we demonstrate that without invoking charge density topologies the often used electrostatic surface potential model is certainly inadequate for the exploration of the noncovalent topology of bonding interactions in the majority of the dimers examined.

13.
Molecules ; 24(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480378

RESUMEN

Using the second-order Møller-Plesset perturbation theory (MP2), together with Dunning's all-electron correlation consistent basis set aug-cc-pVTZ, we show that the covalently bound oxygen atom present in a series of 21 prototypical monomer molecules examined does conceive a positive (or a negative) σ-hole. A σ-hole, in general, is an electron density-deficient region on a bound atom M along the outer extension of the R-M covalent bond, where R is the reminder part of the molecule, and M is the main group atom covalently bonded to R. We have also examined some exemplar 1:1 binary complexes that are formed between five randomly chosen monomers of the above series and the nitrogen- and oxygen-containing Lewis bases in N2, PN, NH3, and OH2. We show that the O-centered positive σ-hole in the selected monomers has the ability to form the chalcogen bonding interaction, and this is when the σ-hole on O is placed in the close proximity of the negative site in the partner molecule. Although the interaction energy and the various other 12 characteristics revealed from this study indicate the presence of any weakly bound interaction between the monomers in the six complexes, our result is strongly inconsistent with the general view that oxygen does not form a chalcogen-bonded interaction.


Asunto(s)
Calcógenos/química , Oxígeno/química , Modelos Moleculares , Teoría Cuántica , Electricidad Estática , Termodinámica , Vibración
14.
Molecules ; 24(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678158

RESUMEN

Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic structures and binding energies of the interactions for a series of 22 binary complexes formed between identical or different atomic domains in similar or related halogen-substituted molecules containing fluorine. These were obtained using various computational approaches, including density functional and ab initio first-principles theories with M06-2X, RHF, MP2 and CCSD(T). The physical chemistry of non-covalent bonding interactions in these complexes was explored using both Quantum Theory of Atoms in Molecules and Symmetry Adapted Perturbation Theories. The surface reactivity of the 17 monomers was examined using the Molecular Electrostatic Surface Potential approach. We have demonstrated inter alia that the dispersion term, the significance of which is not always appreciated, which emerges either from an energy decomposition analysis, or from a correlated calculation, plays a structure-determining role, although other contributions arising from electrostatic, exchange-repulsion and polarization effects are also important. The 0.0010 a.u. isodensity envelope, often used for mapping the electrostatic potential is found to provide incorrect information about the complete nature of the surface reactive sites on some of the isolated monomers, and can lead to a misinterpretation of the results obtained.


Asunto(s)
Flúor/química , Modelos Químicos , Modelos Moleculares , Electricidad Estática , Halógenos/química
15.
J Comput Chem ; 39(7): 343-350, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29226338

RESUMEN

Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r-6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc.

16.
J Comput Chem ; 39(23): 1902-1912, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30247769

RESUMEN

Methylammonium lead trihalides and their derivatives are photovoltaic materials. CH3 NH3 PbI3 is the most efficient light harvester among all the known halide perovskites (PSCs). It is regarded as unsuitable for long-term stable solar cells, thus it is necessary to develop other types of PSC materials to achieve stable PSCs (Wang et al., Nat. Energy 2016, 2, 16195). Because of this, various research efforts are on-going to discover novel lead-based or lead-free single/double PSCs, which can be stable, synthesizable, transportable, abundant and efficient in solar energy conversion. Keeping these factors in mind, we report here the electronic structures, energetic stabilities and some materials properties (viz. band structures, density of states spectra and photo-carrier masses) of the PSC chloroammonium lead triiodide (ClNH3 PbI3 ). This emerges through compositional engineering that often focuses on B- and Y-site substitutions within the domain of the BMY3 PSC stoichiometry. ClNH3 PbI3 is found to be stable as orthorhombic and pseudocubic polymorphs, which are analogous with the low and high temperature polymorphs of CH3 NH3 PbI3 . The bandgap of ClNH3 PbI3 (values between 1.28 and 1.60 eV) is found to be comparable with that of CH3 NH3 PbI3 , (1.58 eV), both obtained with periodic DFT at the PBE level of theory. Spin orbit coupling is shown to have a pronounced effect on both the magnitude and character of the bandgap. The computed results show that ClNH3 PbI3 may act as a competitor for CH3 NH3 PbI3 for photovoltaics. © 2018 Wiley Periodicals, Inc.

17.
Chemphyschem ; 19(12): 1486-1499, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29569853

RESUMEN

We examine the equilibrium structure and properties of six fully or partially fluorinated hydrocarbons and several of their binary complexes using computational methods. In the monomers, the electrostatic surface of the fluorine is predicted to be either entirely negative or weakly positive. However, its lateral sites are always negative. This enables the fluorine to display an anisotropic distribution of charge density on its electrostatic surface. While this is the electrostatic surface scenario of the fluorine atom, its negative sites in some of these monomers are shown to have the potential to engage in attractive engagements with the negative site(s) on the same atom in another molecule of the same type, or a molecule of a different type, to form bimolecular complexes. This is revealed by analyzing the results of current state-of-the-art computational approaches such as DFT, together with those obtained from the quantum theory of atoms in molecules, molecular electrostatic surface potential and symmetry adapted perturbation theories. We demonstrate that the intermolecular interaction energy arising in part from the universal London dispersion, which has been underappreciated for decades, is an essential factor in explaining the attraction between the negative sites, although energy arising from polarization strengthens the extent of the intermolecular interactions in these complexes.

18.
Phys Chem Chem Phys ; 20(22): 15316-15329, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29796486

RESUMEN

A set of six binary complexes that feature iodine-centered halogen bonding, extracted from structures deposited in the Cambridge Structure Database, has been examined computationally using density functional theory calculations with the M06-2X global hybrid, and dispersion corrected B3LYP-D3 and B97-D3, to determine their equilibrium geometries, binding energies and electronic properties. The results show that gas phase calculations are very informative in evaluating what occurs in the solid state, even though these calculations ignore the importance of lattice packing and counter ion effects. The calculated binding energies for the non-covalent interactions responsible for these complexes lie between -4.15 and -7.48 kcal mol-1 (M06-2X), which enables us to characterize them as weak-to-moderate in strength. The basis set superposition error energies are calculated to vary between 0.60 and 2.42 kcal mol-1 for all the complexes examined, even though an all-electron QZP basis set used in the analysis was of quadrupole-ζ (plus polarization) quality. Dispersion is found to have a profound effect on the binding energy of some of these complexes, and was estimated to be as large as 5.0 kcal mol-1. For one complex, the crystal geometry could not be precisely reproduced using a gas phase calculation. While both halogen- and hydrogen-bonding interactions were found competitive, they cooperate with each other to determine the stable configuration of the binary complex. The molecular electrostatic surface potential, quantum theory of atoms in molecules, and reduced density gradient non-covalent Interaction models were utilized to arrive at a fundamental understanding of the various inter- and intra-molecular molecular interactions involved, as well as some other previously-overlooked non-covalent interactions that emerge in the modelling.

19.
J Comput Chem ; 38(32): 2802-2818, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29047107

RESUMEN

Methylammonium lead iodide (CH3 NH3 PbI3 ) perovskite compound has produced a remarkable breakthrough in the photovoltaic history of solar cell technology because of its outstanding device-based performance as a light-harvesting semiconductor. Whereas the experimental and theoretical studies of this system in the solid state have been numerously reported in the last 4 years, its fundamental cluster physics is yet to be exploited. To this end, this study has performed theoretical investigations using DFT-M06-2X/ADZP to examine the principal geometrical, electronic, topological, and orbital properties of the CH3 NH3 PbI3 molecular building block. The intermolecular hydrogen bonded interactions examined for the most important conformers of the system are found to be unusually strong, with binding energies lying between -93.53 and -125.11 kcal mol-1 (beyond the covalent limit, -40 kcal mol-1 ), enabling us to classify the underlying interactions as ultra-strong type since their characteristic properties are unidentical with those have already been proposed as very strong, strong, moderate, weak, and van der Waals. Based on this, together with the unusually high charge transfers, strong hyperconjugative interactions, sophisticated topologies of the charge density, and short intermolecular distances of separation, we have characterized the conformers of CH3 NH3 PbI3 as Mulliken inner complexes. The consequences of these, as well as of the ultra-strong interactions, in designing novel functional nanomaterials are outlined. © 2017 Wiley Periodicals, Inc.

20.
J Comput Chem ; 36(31): 2328-43, 2015 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-26505258

RESUMEN

A large number of fully halogenated benzene derivatives containing the fluorine, chlorine, bromine, and iodine atoms have been experimentally synthesized both as single- and co-crystals (e.g., Desiraju et al., Chem. Eur. J. 2006, 12, 2222), yet the natures of the halogen ··· halogen interactions between the vicinal halogens in these compounds within the intramolecular domain are undisclosed. Given a fundamental understanding of these interactions is incredibly important in many areas of chemical, biological, supramolecular, and material sciences, we present here our newly discovered theoretical results that delineate whilst the nature of an F···F interaction in a pair of two adjacent fluorine atoms in either of the hexafluorobenzene and 1,4-dibromotetrafluorobenzene compounds examined is almost unclear, each of the latter three hexahalogenated benzene derivatives (viz., C6 Cl6 , C6 Br6 , and C6 I6 ), and each of the seven of their fully mixed hexahalogenated benzene analogues, are found to be stabilized by means of a number of halogen···halogen interactions, each a form of long-range attraction within the intramolecular domain. The Molecular Electrostatic Surface Potential model was found to be unsurprisingly unsuitable in unraveling any of the aforesaid attractions between the halogen atoms. However, such interactions successfully enunciated by a set of noncovalent interaction descriptors of geometrical, topological, and electrostatic origins. These latter properties were extracted combining the results of the Density Functional Theory electronic structure calculations with those revealed from Atoms in Molecules, and Reduced Density Gradient charge density-based topological calculations, and are expounded in detail to formalize the conclusions. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Derivados del Benceno/química , Halógenos/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA