Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(13): 1269-1281, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38197505

RESUMEN

ABSTRACT: Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Médula Ósea/patología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfocitos T CD8-positivos/patología , Recurrencia
2.
Blood ; 139(17): 2706-2711, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134127

RESUMEN

Hematopoietic stem cell transplant (HSCT) is a curative option for patients with high-risk acute lymphoblastic leukemia (ALL), but relapse remains a major cause of treatment failure. To prevent disease relapse, we prepared and infused donor-derived multiple leukemia antigen-specific T cells (mLSTs) targeting PRAME, WT1, and survivin, which are leukemia-associated antigens frequently expressed in B- and T-ALL. Our goal was to maximize the graft-versus-leukemia effect while minimizing the risk of graft-versus-host disease (GVHD). We administered mLSTs (dose range, 0.5 × 107 to 2 × 107 cells per square meter) to 11 patients with ALL (8 pediatric, 3 adult), and observed no dose-limiting toxicity, acute GVHD or cytokine release syndrome. Six of 8 evaluable patients remained in long-term complete remission (median: 46.5 months; range, 9-51). In these individuals we detected an increased frequency of tumor-reactive T cells shortly after infusion, with activity against both targeted and nontargeted, known tumor-associated antigens, indicative of in vivo antigen spreading. By contrast, this in vivo amplification was absent in the 2 patients who experienced relapse. In summary, infusion of donor-derived mLSTs after allogeneic HSCT is feasible and safe and may contribute to disease control, as evidenced by in vivo tumor-directed T-cell expansion. Thus, this approach represents a promising strategy for preventing relapse in patients with ALL.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Adulto , Niño , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia/terapia , Recurrencia , Trasplante Homólogo/efectos adversos
3.
Cytotherapy ; 26(8): 869-877, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597860

RESUMEN

BACKGROUND: Deficits in T cell immunity translate into increased risk of severe viral infection in recipients of solid organ and hematopoietic cell transplants. Thus, therapeutic strategies that employ the adoptive transfer of virus-specific T cells are being clinically investigated to treat and prevent viral diseases in these highly immunocompromised patients. Posoleucel is an off-the-shelf multivirus-specific T cell investigational product for the treatment and prevention of infections due to adenovirus, BK virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus 6 or JC virus. METHODS: Herein we perform extensive characterization of the phenotype and functional profile of posoleucel to illustrate the cellular properties that may contribute to its in vivo activity. RESULTS AND CONCLUSIONS: Our results demonstrate that posoleucel is enriched for central and effector memory CD4+ and CD8+ T cells with specificity for posoleucel target viruses and expressing a broad repertoire of T cell receptors. Antigen-driven upregulation of cell-surface molecules and production of cytokine and effector molecules indicative of proliferation, co-stimulation, and cytolytic potential demonstrate the specificity of posoleucel and its potential to mount a broad, polyfunctional, and effective Th1-polarized antiviral response upon viral exposure. We also show the low risk for off-target and nonspecific effects as evidenced by the enrichment of posoleucel in memory T cells, low frequency of naive T cells, and lack of demonstrated alloreactivity in vitro. The efficacy of posoleucel is being explored in four placebo-controlled clinical trials in transplant recipients to treat and prevent viral infections (NCT05179057, NCT05305040, NCT04390113, NCT04605484).


Asunto(s)
Huésped Inmunocomprometido , Virosis , Humanos , Virosis/inmunología , Virosis/terapia , Virosis/prevención & control , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Fenotipo
4.
Br J Haematol ; 202(4): 874-878, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37323051

RESUMEN

Respiratory syncytial virus (RSV)-associated viral infections are a major public health problem affecting the immunologically naïve/compromised populations. Given the RSV-associated morbidity and the limited treatment options, we sought to characterize the cellular immune response to RSV to develop a targeted T cell therapy for off-the-shelf administration to immunocompromised individuals. Here we report on the immunological profiling, as well as manufacturing, characterization and antiviral properties of these RSV-targeted T cells. A randomized, phase 1/2 clinical trial evaluating their safety and activity in haematopoietic stem cell transplant recipients as an off-the-shelf multi-respiratory virus-directed product is currently underway (NCT04933968, https://clinicaltrials.gov).


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Antivirales/uso terapéutico , Inmunoterapia , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Linfocitos T
5.
Blood ; 137(19): 2585-2597, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33270816

RESUMEN

Relapse after allogeneic hematopoietic stem cell transplantation (HCT) is the leading cause of death in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Infusion of unselected donor lymphocytes (DLIs) enhances the graft-versus-leukemia (GVL) effect. However, because the infused lymphocytes are not selected for leukemia specificity, the GVL effect is often accompanied by life-threatening graft-versus-host disease (GVHD), related to the concurrent transfer of alloreactive lymphocytes. Thus, to minimize GVHD and maximize GVL, we selectively activated and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by AML/MDS cells (PRAME, WT1, Survivin, and NY-ESO-1). Products that demonstrated leukemia antigen specificity were generated from 29 HCT donors. In contrast to DLIs, leukemia-specific T cells (mLSTs) selectively recognized and killed leukemia antigen-pulsed cells, with no activity against recipient's normal cells in vitro. We administered escalating doses of mLSTs (0.5 to 10 × 107 cells per square meter) to 25 trial enrollees, 17 with high risk of relapse and 8 with relapsed disease. Infusions were well tolerated with no grade >2 acute or extensive chronic GVHD seen. We observed antileukemia effects in vivo that translated into not-yet-reached median leukemia-free and overall survival at 1.9 years of follow-up and objective responses in the active disease cohort (1 complete response and 1 partial response). In summary, mLSTs are safe and promising for the prevention and treatment of AML/MDS after HCT. This trial is registered at www.clinicaltrials.com as #NCT02494167.


Asunto(s)
Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/terapia , Transfusión de Linfocitos , Síndromes Mielodisplásicos/terapia , Terapia Recuperativa , Linfocitos T/trasplante , Adolescente , Adulto , Anciano , Aloinjertos , Antígenos de Neoplasias/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Transfusión de Linfocitos/efectos adversos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/tratamiento farmacológico , Recurrencia , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/inmunología , Donantes de Tejidos , Adulto Joven
6.
Haematologica ; 108(7): 1840-1850, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373249

RESUMEN

Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).


Asunto(s)
COVID-19 , Trasplante de Células Madre Hematopoyéticas , Humanos , Linfocitos , SARS-CoV-2
7.
Biol Blood Marrow Transplant ; 26(5): 911-919, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31927102

RESUMEN

Serious viral infections, due to delayed immune reconstitution, are a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Thus, many transplant centers prospectively track cellular immune recovery by evaluating absolute cell numbers and the phenotypic profile of reconstituting T cell subsets to identify individuals who are at highest risk of infection. Conventional assessments, however, fail to measure either the antigen specificity or functional capacity of reconstituting cells-both factors that correlate with endogenous antiviral protection. In this pilot study, we sought to address this limitation by prospectively investigating the tempo of endogenous immune reconstitution in a cohort of 23 pediatric HSCT patients using both quantitative (flow cytometry) and qualitative (IFNγ ELISpot) measures, which we correlated with either the presence or absence of infections associated with cytomegalovirus, adenovirus, Epstein-Barr virus, BK virus, human herpes virus 6, respiratory syncytial virus, parainfluenza, influenza, and human metapneumovirus. We present data spanning 12 months post-transplant demonstrating the influence of conditioning on immune recovery and highlighting the differential impact of active viral replication on the quantity and quality of reconstituting cells. Judicious use of standard (phenotypic) and novel (functional) monitoring strategies can help guide the clinical care and personalized management of allogenic HSCT recipients with infections.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Células Madre Hematopoyéticas , Niño , Herpesvirus Humano 4 , Humanos , Monitorización Inmunológica , Proyectos Piloto , Receptores de Trasplantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA