Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38832734

RESUMEN

This article investigates the relaxation dynamics of the ionized 2a1 state of a water molecule within a water dimer. The study was motivated by findings from two previous pieces of research that focused on the relaxation behaviors of the inner-valence ionized water dimer. The present study discloses an observation indicating that water dimers display specific fragmentation patterns following inner-valence ionization, depending on the position of the vacancy. Vacancies were created in the 2a1 state of the proton-donating water molecule (PDWM) and proton-accepting water molecule (PAWM). Utilizing Born-Oppenheimer molecular dynamics simulations, the propagation of the 2a1 ionized state was carried out for both scenarios. The results revealed proton transfer occurred when the vacancy resided in the PDWM, accompanied by the closing of decay channels for O-H bond distance (RO-H) > 1.187 Å (matching Richter et al.'s findings). Conversely, when vacancy was on PAWM, we observed no closing of decay channels (aligning with Jahnke et al.'s findings). This difference translates to distinct fragmentation pathways. In PDWM cases, 2a1 state ionization leads to H3O+ -OH• formation. In contrast, PAWM vacancies result in decay pathways leading to H2O+-H2O+ products.

2.
J Chem Phys ; 159(5)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37534678

RESUMEN

Intermolecular Coulombic decay or electron transfer-mediated decay are the autoionization processes through which a molecule can relax. This relaxation is only possible if the inner valence's ionization potential (IP) exceeds the system's double ionization potential (DIP). To study the effects of charge and solvation shell, we have calculated the IP, DIP values, and lifetime of Na-2s and Mg-2s temporary bound states in various optimized structures of Na+-(H2O)n and Mg2+-(H2O)n (n = 1-5) micro-solvated clusters, where n water molecules are distributed in a way that some are directly bound to the metal ion and the rest to the water molecules. The first and second solvation shells are the names for the former and the latter water-binding positions, respectively. For a given n, the lifetime of decaying states is longer when water molecules are in the second solvation shell. We found that the Mg-2p state can decay for all n values in Mg2+-(H2O)n clusters, whereas the Na-2p state's decay is possible for n ≥ 2 in Na+-(H2O)n clusters. Our findings highlight the influence of metal ions' charge, different solvation shell structures, and the number of water molecules on the decay rate. These systems are relevant to the human body, which makes this study significant.

3.
J Phys Chem A ; 124(50): 10407-10421, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33327725

RESUMEN

The negative ion resonance states, which are electron-molecule metastable compound states, play the most important role in free-electron controlled molecular reactions and low-energy free-electron-induced DNA damage. Their electronic structure is often only poorly described but crucial to an understanding of their reaction dynamics. One of the most important challenges to current electronic structure theory is the computation of negative ion resonance states. As a major step forward, coupled-cluster theories, which are well-known for their ability to produce the best approximate bound state electronic eigen solutions, are upgraded to offer the most accurate and effective approximations for negative ion resonance states. The existing Fock-space coupled-cluster (FSCC) and the equation-of-motion coupled-cluster (EOM-CC) approaches that compute bound states are redesigned for the direct and simultaneous determination of both the kinetic energy of the free electron at which the electron-molecule compound states are resonantly formed and the corresponding autodetachment decay rate of the electron from the metastable compound state. This Feature Article reviews the computation of negative ion resonances using the FSCC approach and, in passing, provides the highlights of the equivalent EOM-CC approach.

4.
J Chem Phys ; 153(18): 184306, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187446

RESUMEN

The electronic structure parameter (WM) of the nuclear magnetic quadrupole moment (MQM) interaction in numerous open-shell metal monofluorides (viz., MgF, CaF, SrF, BaF, RaF, and PbF) is computed in the fully relativistic coupled-cluster framework. The electron-correlation effects are found to be very important for the precise calculation of WM in the studied molecular systems. The molecular MQM interaction parameter scales nearly as Z2 in the alkaline earth metal monofluorides, where Z is the nuclear charge of metal. Our study identifies 223RaF as a good candidate for the experimental search of the nuclear MQM, which can help unravel the physics beyond the standard model in the hadron sector of matter.

5.
J Chem Phys ; 152(10): 104302, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171231

RESUMEN

This article deals with the extension of the relativistic double-ionization equation-of-motion coupled-cluster (DI-EOMCC) method [H. Pathak et al. Phys. Rev. A 90, 010501(R) (2014)] for the molecular systems. The Dirac-Coulomb Hamiltonian with four-component spinors is considered to take care of the relativistic effects. The implemented method is employed to compute a few low-lying doubly ionized states of noble gas atoms (Ar, Kr, Xe, and Rn) and Cl2, Br2, HBr, and HI. Additionally, we presented results with two intermediate schemes in the four-component relativistic DI-EOMCC framework to understand the role of electron correlation. The computed double ionization spectra for the atomic systems are compared with the values from the non-relativistic DI-EOMCC method with spin-orbit coupling [Z. Wang et al. J. Chem. Phys. 142, 144109 (2015)] and the values from the National Institute of Science and Technology (NIST) database. Our atomic results are found to be in good agreement with the NIST values. Furthermore, the obtained results for the molecular systems agree well with the available experimental values.

6.
J Chem Phys ; 150(8): 084304, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823771

RESUMEN

We employ the Z-vector method in the four-component relativistic coupled-cluster framework to calculate the parity (P) and time-reversal (T ) symmetry violating scalar-pseudoscalar nucleus-electron interaction constant (Ws), the effective electric field (Eeff) experienced by the unpaired electron, and the nuclear magnetic quadrupole moment-electron interaction constant (WM) in the open-shell ground electronic state of HgF. The molecular frame dipole moment and the magnetic hyperfine structure (HFS) constant of the molecule are also calculated at the same level of theory. The outcome of our study is that HgF has a high value of Eeff (115.9 GV/cm), Ws (266.4 kHz), and WM (3.59 × 1033 Hz/e cm2), which shows that it can be a possible candidate for the search of new physics beyond the standard model. Our results are in good agreement with the available literature values. Furthermore, we investigate the effect of the basis set and the virtual energy functions on the computed properties. The role of the high-energy virtual spinors is found to be significant in the calculation of the HFS constant and the P,T-odd interaction coefficients.

7.
J Chem Phys ; 144(12): 124307, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27036448

RESUMEN

The high effective electric field (Eeff) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation requires a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large Eeff value (123.2 GV/cm) which makes it a potential candidate for the next generation eEDM experiment. Our study also reveals that it has a large scalar-pseudoscalar (S-PS) P,T-violating interaction constant, Ws = 284.2 kHz. To judge the accuracy of the obtained results, we have calculated parallel and perpendicular magnetic hyperfine structure (HFS) constants and compared with the available experimental values. The results of our calculation are found to be in nice agreement with the experimental values. Therefore, by looking at the HFS results, we can say that both Eeff and Ws values are also very accurate. Further, We have derived the relationship between these quantities and the ratio which will help to get model independent value of eEDM and S-PS interaction constant.

8.
J Chem Phys ; 145(7): 074110, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27544090

RESUMEN

The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.

9.
J Chem Phys ; 143(2): 024305, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26178103

RESUMEN

Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. We have also calculated the lifetime of Ar(2+)(2p(-1)3p(-1)) (1)D, Ar(2+)(2p(-1)3p(-1)) (1)S, and Ar(2+)(2p(-1)3s(-1)) (1)P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.

10.
J Chem Phys ; 142(4): 044113, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25637975

RESUMEN

We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N(6) does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

11.
J Chem Phys ; 143(8): 084119, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26328830

RESUMEN

The effective electric field experienced by the unpaired electron in the ground state of PbF, which is a potential candidate in the search of electron electric dipole moment due to some special characteristics, is calculated using Z-vector method in the coupled cluster single- and double- excitation approximation with four component Dirac spinor. This is an important quantity to set the upper bound limit of the electron electric dipole moment. Further, we have calculated molecular dipole moment and parallel magnetic hyperfine structure constant (A‖) of (207)Pb in PbF to test the accuracy of the wavefunction obtained in the Z-vector method. The outcome of our calculations clearly suggests that the core electrons have significant contribution to the "atom in compound" properties.

12.
J Phys Chem A ; 118(8): 1350-62, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24502288

RESUMEN

We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.

13.
J Chem Phys ; 141(23): 234108, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25527920

RESUMEN

Electronically excited atom or molecule in an environment can relax via transferring its excess energy to the neighboring atoms or molecules. The process is called Interatomic or Intermolecular coulombic decay (ICD). The ICD is a fast decay process in environment. Generally, the ICD mechanism predominates in weakly bound clusters. In this paper, we have applied the complex absorbing potential approach/equation-of-motion coupled cluster (CAP/EOMCCSD) method which is a combination of CAP and EOMCC approach to study the lifetime of ICD at various geometries of the molecules. We have applied this method to calculate the lifetime of ICD in Ne-X; X = Ne, Mg, Ar, systems. We compare our results with other theoretical and experimental results available in literature.

14.
J Chem Phys ; 141(16): 164113, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25362278

RESUMEN

The equation-of-motion coupled cluster method employing the complex absorbing potential has been used to investigate the low energy electron scattering by CO2. We have studied the potential energy curve for the (2)Π(u) resonance states of CO2(-) upon bending as well as symmetric and asymmetric stretching of the molecule. Specifically, we have stretched the C-O bond length from 1.1 Å to 1.5 Å and the bending angles are changed between 180° and 132°. Upon bending, the low energy (2)Π(u) resonance state is split into two components, i.e., (2)A1, (2)B1 due to the Renner-Teller effect, which behave differently as the molecule is bent.

15.
J Chem Phys ; 140(11): 114312, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655185

RESUMEN

We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (π,σ) type, whereas in 2-naphthyl cation it is (σ,σ') type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

16.
Heliyon ; 10(10): e31217, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813177

RESUMEN

We developed a novel chromogenic reagent and sensor by selective approach, for the detection and identification of dichlorvos, which we tested with the thin layer chromatography method. For the first time, we reported in situ-generated glyoxal as a hydrolysis product, which then interacts with isoniazid to produce a yellow-colored cyclic compound. We used well-known spectroscopic techniques to confirm the chemical identity of the final product. We initially investigated the reaction using a variety of approaches, followed by attempts to establish the reaction mechanism using Density Functional Theory by Gaussian software.

17.
Phys Chem Chem Phys ; 15(41): 17915-21, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24045722

RESUMEN

The equation-of-motion coupled-cluster (EOM-CC) method along with the complex absorbing potential (CAP) is used for the study of resonance in e(-)-N2 and e(-)-CO. Resonance position and width are studied as a function of bond length. We report the potential curves (PC) of the resonance states.

18.
J Chem Phys ; 138(9): 094108, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23485278

RESUMEN

Within the Fock-space multi-reference coupled cluster framework, we have evaluated the electronic transition dipole moments, which determine absorption intensities. These depend on matrix elements between two different wave functions (e.g., ground state to the excited state). We present two different ways, to calculate these transition moments. In the first method, we construct the ground and excited state wave functions with the normal exponential ansatz of Fock-space coupled cluster method and then calculate the relevant off-diagonal matrix elements. In the second approach, we linearize the exponential form of the wave operator which will generate the left vector, by use of Lagrangian formulation. The right vector is obtained from the exponential ansatz. In order to relate the transition moments to oscillator strengths, excitation energies need to be evaluated. The excitation energies are obtained from the Fock-space multi-reference framework. The transition dipole moments of the ground to a few excited states, together with the oscillator strengths of a few molecules, are presented.

19.
J Chem Phys ; 139(6): 064112, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23947848

RESUMEN

Interatomic Coulombic decay (ICD) is an efficient and ultrafast radiationless decay mechanism which can be initiated by removal of an electron from the inner-valence shell of an atom or molecule. Generally, the ICD mechanism is prevailed in weakly bound clusters. A very promising approach, known as CAP/EOM-CC, consists of the combination of complex absorbing potential (CAP) with the equation-of-motion coupled-cluster (EOM-CC) method, is applied for the first time to study the nature of the ICD mechanism. We have applied this technique to determine the lifetime of an auto-ionized, inner-valence excited state of the NeH2O, Ne(H2O)2, and Ne(H2O)3 systems. The lifetime is found to be very short and decreases significantly with the number of neighboring water molecules.

20.
J Chem Phys ; 139(7): 074108, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23968073

RESUMEN

In this paper, we present a formulation based on Lagrange multiplier approach for efficient evaluation of excited state energy derivatives in Fock space coupled cluster theory within the intermediate Hamiltonian framework. The formulation is applied to derive the explicit generic expressions up to second order energy derivatives for [1, 1] sector of Fock space with singles and doubles approximation. Its advantage, efficiency, and interconnection in comparison to the Lagrange multiplier approach in traditional formulation of Fock space, which is built on the concept of Bloch equation based effective Hamiltonian, has been discussed. Computational strategy for their implementation has also been discussed in some detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA