Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 23(3): 291-303, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19204116

RESUMEN

A DNA double-strand break (DSB) is repaired by gene conversion (GC) if both ends of the DSB share homology with an intact DNA sequence. However, if homology is limited to only one of the DSB ends, repair occurs by break-induced replication (BIR). It is not known how the homology status of the DSB ends is first assessed and what other parameters govern the choice between these repair pathways. Our data suggest that a "recombination execution checkpoint" (REC) regulates the choice of the homologous recombination pathway employed to repair a given DSB. This choice is made prior to the initiation of DNA synthesis, and is dependent on the relative position and orientation of the homologous sequences used for repair. The RecQ family helicase Sgs1 plays a key role in regulating the choice of the recombination pathway. Surprisingly, break repair and gap repair are fundamentally different processes, both kinetically and genetically, as Pol32 is required only for gap repair. We propose that the REC may have evolved to preserve genome integrity by promoting conservative repair, especially when a DSB occurs within a repeated sequence.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN/fisiología , ADN de Hongos/genética , ADN de Hongos/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Evolución Molecular , Conversión Génica , Cinética , Modelos Biológicos , Modelos Genéticos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 27(10): 1502-12, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18418382

RESUMEN

Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Proteínas de Ciclo Celular/genética , Activación Enzimática , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Metilación , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Curr Biol ; 14(23): 2096-106, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15589151

RESUMEN

BACKGROUND: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. RESULTS: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. CONCLUSIONS: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.


Asunto(s)
Rotura Cromosómica/fisiología , Segregación Cromosómica/fisiología , Reparación del ADN/fisiología , Inestabilidad Genómica/fisiología , Mitosis/fisiología , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Fluorescentes Verdes , Microscopía Fluorescente , Mitosis/genética , Plásmidos/genética , Proteína Recombinante y Reparadora de ADN Rad52 , Huso Acromático/fisiología , Levaduras
4.
Mol Cell Biol ; 23(23): 8913-23, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14612428

RESUMEN

Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Ciclo Celular , Quinasa de Punto de Control 2 , Reparación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Epistasis Genética , Genes Fúngicos , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteína Recombinante y Reparadora de ADN Rad52 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 11(3): 827-35, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12667463

RESUMEN

Saccharomyces cells suffering a DNA double-strand break (DSB) ultimately escape checkpoint-mediated G2/M arrest either by recovery once the lesion is repaired or by adaptation if the lesion proves irreparable. Cells lacking the PP2C-like phosphatases Ptc2 and Ptc3 are unable to adapt to a HO-induced DSB and are also defective in recovering from a repairable DSB. In contrast, overexpression of PTC2 rescues adaptation-defective yku80Delta and cdc5-ad mutants. These effects are not explained by alterations either in the processing of DSB ends or in DSB repair. In vivo and in vitro evidence suggests that phosphorylated forms of Ptc2 and Ptc3 specifically bind to the Rad53 FHA1 domain and inactivate Rad53-dependent pathways during adaptation and recovery by dephosphorylating Rad53.


Asunto(s)
Daño del ADN , ADN/metabolismo , Proteínas de la Membrana/fisiología , Fosfoproteínas Fosfatasas/fisiología , Monoéster Fosfórico Hidrolasas , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Fase G2 , Glutatión Transferasa/metabolismo , Cinética , Proteínas de la Membrana/genética , Mitosis , Mutación , Fosfoproteínas Fosfatasas/genética , Fosforilación , Plásmidos/metabolismo , Proteína Fosfatasa 2 , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
6.
Mol Cell ; 10(2): 373-85, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12191482

RESUMEN

In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Adaptación Fisiológica , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Citometría de Flujo , Conversión Génica , Eliminación de Gen , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasa Rad51 , Proteína Recombinante y Reparadora de ADN Rad52 , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA