Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pediatr ; 236: 86-94.e6, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34019883

RESUMEN

OBJECTIVE: To identify systolic blood pressure (SBP) percentile trajectories in children and to describe the early-life risk factors and cardiometabolic correlates of those trajectories. STUDY DESIGN: Using age-, sex-, and height-specific SBP percentiles based on the American Academy of Pediatrics reference, we examined SBP trajectories using latent class mixed models from ages 3 to 8 years (n = 844) from the Growing Up in Singapore Towards healthy Outcomes-study, a Singaporean mother-offspring cohort study. We analyzed associations between SBP trajectories and early-life risk factors using multinomial logistic regression and differences across trajectories in cardiometabolic outcomes using multiple linear regression. RESULTS: Children were classified into 1 of 4 SBP percentile trajectories: "low increasing" (15%), "high stable" (47%), "high decreasing" (20%), and "low stable" (18%). Maternal hypertension during early pregnancy was a predictor of the "high stable" and "low increasing" SBP trajectories. Rapid child weight gain in the first 2 years of life was only associated with the "high stable" trajectory. Compared with children in the "low stable" trajectory, children in the "high stable" SBP trajectory had greater body mass index z scores, sum of skinfold thicknesses, waist circumference from ages 3 to 8 years, and abdominal adipose tissue (milliliters) at 4.5 years (adjusted mean difference [95% CI]: superficial and deep subcutaneous abdominal adipose tissue: 115.2 [48.1-182.3] and 85.5 [35.2-135.8]). Their fat mass (kilograms) (1.3 [0.6-2.0]), triglyceride levels (mmol/L) (0.10 [0.02-0.18]), and homeostasis model assessment of insulin resistance (0.28 [0.11 0.46]) at age 6 years were also greater but not their arterial thickness and stiffness. CONCLUSIONS: Reducing maternal blood pressure during pregnancy and infant weight gain in the first 2 years of life might help to prevent the development of high SBP.


Asunto(s)
Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/epidemiología , Factores de Edad , Glucemia/metabolismo , Índice de Masa Corporal , Enfermedades Cardiovasculares/diagnóstico , Niño , Preescolar , Colesterol/sangre , Femenino , Humanos , Lactante , Modelos Logísticos , Masculino , Factores de Riesgo , Singapur , Circunferencia de la Cintura
2.
PLoS Biol ; 15(2): e1002597, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207742

RESUMEN

Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/uso terapéutico , Dieta/efectos adversos , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores/metabolismo , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Condicionamiento Físico Animal , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
3.
MAGMA ; 29(2): 287-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26755063

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) plays a key role for thermogenesis in mammals and infants. Recent confirmation of BAT presence in adult humans has aroused great interest for its potential to initiate weight-loss and normalize metabolic disorders in diabetes and obesity. Reliable detection and differentiation of BAT from the surrounding white adipose tissue (WAT) and muscle is critical for assessment/quantification of BAT volume. This study evaluates magnetic resonance (MR) acquisition for BAT and the efficacy of different automated methods for MR features-based BAT segmentation to identify the best suitable method. MATERIALS AND METHODS: Multi-point Dixon and multi-echo T2 spin-echo images were acquired from 12 mice using an Agilent 9.4T scanner. Four segmentation methods: multidimensional thresholding (MTh); region-growing (RG); fuzzy c-means (FCM) and neural-network (NNet) were evaluated for the interscapular region and validated against manually defined BAT, WAT and muscle. RESULTS: Statistical analysis of BAT segmentation yielded a median Dice-Statistical-Index, and sensitivity of 89.92% for NNet, 82.86% for FCM, 72.74% for RG, and 72.70%, for MTh, respectively. CONCLUSION: This study demonstrates that NNet improves the specificity to BAT from surrounding tissue based on 3-point Dixon and T2 MRI. This method facilitates quantification and longitudinal measurement of BAT in preclinical-models and human subjects.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Blanco/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Tejido Adiposo Pardo/anatomía & histología , Tejido Adiposo Blanco/anatomía & histología , Algoritmos , Animales , Femenino , Aumento de la Imagen/métodos , Aprendizaje Automático , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
4.
MAGMA ; 29(2): 277-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26747282

RESUMEN

OBJECTIVE: The aim was to auto-segment and characterize brown adipose, white adipose and muscle tissues in rats by multi-parametric magnetic resonance imaging with validation by histology and UCP1. MATERIALS AND METHODS: Male Wistar rats were randomized into two groups for thermoneutral (n = 8) and cold exposure (n = 8) interventions, and quantitative MRI was performed longitudinally at 7 and 11 weeks. Prior to imaging, rats were maintained at either thermoneutral body temperature (36 ± 0.5 °C), or short term cold exposure (26 ± 0.5 °C). Neural network based automatic segmentation was performed on multi-parametric images including fat fraction, T2 and T2* maps. Isolated tissues were subjected to histology and UCP1 analysis. RESULTS: Multi-parametric approach showed precise delineation of the interscapular brown adipose tissue (iBAT), white adipose tissue (WAT) and muscle regions. Neural network based segmentation results were compared with manually drawn regions of interest, and showed 96.6 and 97.1% accuracy for WAT and BAT respectively. Longitudinal assessment of the iBAT volumes showed a reduction at 11 weeks of age compared to 7 weeks. The cold exposed group showed increased iBAT volume compared to thermoneutral group at both 7 and 11 weeks. Histology and UCP1 expression analysis supported our imaging results. CONCLUSION: Multi-parametric MR based neural network auto-segmentation provides accurate separation of BAT, WAT and muscle tissues in the interscapular region. The cold exposure improves the classification and quantification of heterogeneous BAT.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Frío , Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Escápula/diagnóstico por imagen , Articulación del Hombro/diagnóstico por imagen , Tejido Adiposo Pardo/anatomía & histología , Animales , Masculino , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Escápula/anatomía & histología , Sensibilidad y Especificidad , Articulación del Hombro/anatomía & histología
5.
Environ Int ; 183: 108340, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043321

RESUMEN

BACKGROUND: The influence of prenatal exposure to per- and poly- fluoroalkyl substances (PFAS) on birth size and offspring adiposity is unclear, especially for the newer, shorter-chained replacement PFAS. METHODS: In the GUSTO multi-ethnic Singaporean mother-offspring cohort, 12 PFAS were measured in 783 cord plasma samples using ultra-performance-liquid chromatography-tandem-mass-spectrometer (UPLC-MS/MS). Outcomes included offspring anthropometry, other indicators of body composition/metabolic health, and MRI-derived abdominal adiposity (subset) at birth and 6 years of age. PFAS were modeled individually, in categories of long-chain and short-chain PFAS, and as scores of three principal components (PC) derived using PC analysis (PC1, PC2, and PC3 reflect predominant exposure patterns to "very-long-PFAS", "long-PFAS", and "short-PFAS", respectively). Associations with outcomes were assessed using multivariable linear regressions, adjusted for important covariates such as maternal sociodemographic and lifestyle factors. RESULTS: Overall, cord PFAS levels showed either no or positive associations (mostly for long-chain PFAS) with birth weight, length and head circumference. In general, PFAS were associated with higher neonatal abdominal adiposity, driven by shorter-chain PFAS. Perfluoroheptanoic acid (PFHpA) was associated with higher volumes of superficial subcutaneous adipose tissue (sSAT) (3.75 [1.13, 6.37] mL per SD increase in PFAS) and internal adipose tissue (IAT) (1.39 [0.41, 2.38] mL). Higher levels of perfluorobutanesulfonic acid (PFBS), short-chain PFAS, and PC3 were associated with higher IAT volume (ß range 1.22-1.41 mL/SD, all P < 0.02), especially in girls. Higher PC3 score was additionally associated with higher sSAT (3.12 [0.45, 5.80] mL) volume. At age 6 years, most observed associations did not persist. No consistent associations were observed between PFAS and whole-body adiposity measures. CONCLUSIONS: Fetal exposure to emerging short-chain PFAS was associated with higher abdominal adiposity at birth but not at age 6 years. Further research is needed to replicate the findings and to determine if these effects may reappear beyond early childhood. Population exposure to newer PFAS and consequent health impact must be monitored.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Embarazo , Niño , Femenino , Humanos , Preescolar , Adiposidad , Cromatografía Liquida , Estudios Prospectivos , Espectrometría de Masas en Tándem , Obesidad , Composición Corporal , Obesidad Abdominal
6.
Int J Epidemiol ; 49(5): 1591-1603, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32851407

RESUMEN

BACKGROUND: Using longitudinal ultrasounds as an improved fetal growth marker, we aimed to investigate if fetal growth deceleration followed by rapid postnatal weight gain is associated with childhood cardiometabolic risk biomarkers in a contemporary well-nourished population. METHODS: We defined fetal growth deceleration (FGD) as ultrasound-measured 2nd-3rd-trimester abdominal circumference decrease by ≥0.67 standard deviation score (SDS) and rapid postnatal weight gain (RPWG) as 0-2-year-old weight increase by ≥0.67 SDS. In the GUSTO mother-offspring cohort, we grouped 797 children into four groups of FGD-only (14.2%), RPWG-only (23.3%), both (mismatch, 10.7%) or neither (reference, 51.8%). Adjusting for confounders and comparing with the reference group, we tested associations of these growth groups with childhood cardiometabolic biomarkers: magnetic resonance imaging (MRI)-measured abdominal fat (n = 262), liver fat (n = 216), intramyocellular lipids (n = 227), quantitative magnetic resonance-measured overall body fat % (BF%) (n = 310), homeostasis model assessment of insulin resistance (HOMA-IR) (n = 323), arterial wall thickness (n = 422) and stiffness (n = 443), and blood pressure trajectories (ages 3-6 years). RESULTS: Mean±SD birthweights were: FGD-only (3.11 ± 0.38 kg), RPWG-only (3.03 ± 0.37 kg), mismatch (2.87 ± 0.31 kg), reference (3.30 ± 0.36 kg). FGD-only children had elevated blood pressure trajectories without correspondingly increased BF%. RPWG-only children had altered body fat partitioning, higher BF% [BF = 4.26%, 95% confidence interval (CI) (2.34, 6.19)], HOMA-IR 0.28 units (0.11, 0.45)] and elevated blood pressure trajectories. Mismatch children did not have increased adiposity, but had elevated ectopic fat, elevated HOMA-IR [0.29 units (0.04,0.55)] and the highest blood pressure trajectories. Associations remained even after excluding small-for-gestational-age infants from analyses. CONCLUSIONS: Fetal growth deceleration coupled with rapid postnatal weight gain was associated with elevated childhood cardiometabolic risk biomarkers without correspondingly increased BF%.


Asunto(s)
Adiposidad , Resistencia a la Insulina , Presión Sanguínea , Índice de Masa Corporal , Niño , Preescolar , Estudios de Cohortes , Desarrollo Fetal , Humanos , Lactante , Recién Nacido , Aumento de Peso
7.
Int J Epidemiol ; 48(2): 433-444, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649331

RESUMEN

BACKGROUND: Choline status has been positively associated with weight and fat mass in animal and human studies. As evidence examining maternal circulating choline concentrations and offspring body composition in human infants/children is lacking, we investigated this in two cohorts. METHODS: Maternal choline concentrations were measured in the UK Southampton Women's Survey (SWS; serum, n = 985, 11 weeks' gestation) and Singapore Growing Up Towards healthy Outcomes (GUSTO); n = 955, 26-28 weeks' gestation) mother-offspring cohorts. Offspring anthropometry was measured at birth and up to age 5 years. Body fat mass was determined using dual-energy x-ray absorptiometry at birth and age 4 years for SWS; and using air-displacement plethysmography at birth and age 5 years for GUSTO. Linear-regression analyses were performed, adjusting for confounders. RESULTS: In SWS, higher maternal choline concentrations were associated with higher neonatal total body fat mass {ß = 0.60 standard deviation [SD]/5 µmol/L maternal choline [95% confidence interval (CI) 0.04-1.16]} and higher subscapular skinfold thickness [ß = 0.55 mm/5 µmol/L (95% CI, 0.12-1.00)] at birth. In GUSTO, higher maternal choline concentrations were associated with higher neonatal body mass index-for-age z-score [ß = 0.31 SD/5 µmol/L (0.10-0.51)] and higher triceps [ß = 0.38 mm/5 µmol/L (95% CI, 0.11-0.65)] and subscapular skinfold thicknesses [ß = 0.26 mm/5 µmol/L (95% CI, 0.01-0.50)] at birth. No consistent trends were observed between maternal choline and offspring gain in body mass index, skinfold thicknesses, abdominal circumference, weight, length/height and adiposity measures in later infancy and early childhood. CONCLUSION: Our study provides evidence that maternal circulating choline concentrations during pregnancy are positively associated with offspring BMI, skinfold thicknesses and adiposity at birth, but not with growth and adiposity through infancy and early childhood to the age of 5 years.


Asunto(s)
Peso al Nacer , Composición Corporal , Colina/sangre , Fenómenos Fisiologicos Nutricionales Maternos , Tejido Adiposo/metabolismo , Adulto , Antropometría , Índice de Masa Corporal , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Modelos Lineales , Masculino , Estado Nutricional , Estudios Prospectivos , Singapur , Encuestas y Cuestionarios
9.
PLoS One ; 8(9): e74410, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098646

RESUMEN

CONTEXT: Accurate assessment of insulin sensitivity may better identify individuals at increased risk of cardio-metabolic diseases. OBJECTIVES: To examine whether a combination of anthropometric, biochemical and imaging measures can better estimate insulin sensitivity index (ISI) and provide improved prediction of cardio-metabolic risk, in comparison to HOMA-IR. DESIGN AND PARTICIPANTS: Healthy male volunteers (96 Chinese, 80 Malay, 77 Indian), 21 to 40 years, body mass index 18-30 kg/m(2). Predicted ISI (ISI-cal) was generated using 45 randomly selected Chinese through stepwise multiple linear regression, and validated in the rest using non-parametric correlation (Kendall's tau τ). In an independent longitudinal cohort, ISI-cal and HOMA-IR were compared for prediction of diabetes and cardiovascular disease (CVD), using ROC curves. SETTING: The study was conducted in a university academic medical centre. OUTCOME MEASURES: ISI measured by hyperinsulinemic euglycemic glucose clamp, along with anthropometric measurements, biochemical assessment and imaging; incident diabetes and CVD. RESULTS: A combination of fasting insulin, serum triglycerides and waist-to-hip ratio (WHR) provided the best estimate of clamp-derived ISI (adjusted R(2) 0.58 versus 0.32 HOMA-IR). In an independent cohort, ROC areas under the curve were 0.77±0.02 ISI-cal versus 0.76±0.02 HOMA-IR (p>0.05) for incident diabetes, and 0.74±0.03 ISI-cal versus 0.61±0.03 HOMA-IR (p<0.001) for incident CVD. ISI-cal also had greater sensitivity than defined metabolic syndrome in predicting CVD, with a four-fold increase in the risk of CVD independent of metabolic syndrome. CONCLUSIONS: Triglycerides and WHR, combined with fasting insulin levels, provide a better estimate of current insulin resistance state and improved identification of individuals with future risk of CVD, compared to HOMA-IR. This may be useful for estimating insulin sensitivity and cardio-metabolic risk in clinical and epidemiological settings.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Resistencia a la Insulina/fisiología , Medición de Riesgo/métodos , Adulto , Antropometría/métodos , Estudios de Cohortes , Técnica de Clampeo de la Glucosa , Humanos , Modelos Lineales , Estudios Longitudinales , Masculino , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA