Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811854

RESUMEN

Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies. NNPIs were functionalized with reactive warheads for covalent inhibition, optimized with deep saturation mutagenesis and conjugated to antibodies to enable cell-type-specific delivery. Our antibody-peptide inhibitor conjugates specifically blocked the activity of cathepsins in different cancer cells, as well as osteoclasts, and showed therapeutic efficacy in vitro and in vivo. Overall, our approach allows for the rapid design of selective cathepsin inhibitors and can be generalized to inhibit a broad class of proteases in cancer and other diseases.

2.
Biomacromolecules ; 25(3): 1749-1758, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38236997

RESUMEN

The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.


Asunto(s)
Nanovacunas , Vacunas , Animales , Ratones , Especies Reactivas de Oxígeno , Linfocitos T CD8-positivos , Células Dendríticas , Antígenos/química , Adyuvantes Inmunológicos/farmacología , Vacunas/química , Ovalbúmina , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL
3.
Mol Pharm ; 20(10): 4826-4847, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37721387

RESUMEN

Antigen-presenting cells (APCs) orchestrate immune responses and are therefore of interest for the targeted delivery of therapeutic vaccines. Dendritic cells (DCs) are professional APCs that excel in presentation of exogenous antigens toward CD4+ T helper cells, as well as cytotoxic CD8+ T cells. DCs are highly heterogeneous and can be divided into subpopulations that differ in abundance, function, and phenotype, such as differential expression of endocytic receptor molecules. It is firmly established that targeting antigens to DC receptors enhances the efficacy of therapeutic vaccines. While most studies emphasize the importance of targeting a specific DC subset, we argue that the differential intracellular routing downstream of the targeted receptors within the DC subset should also be considered. Here, we review the mouse and human receptors studied as target for therapeutic vaccines, focusing on antibody and ligand conjugates and how their targeting affects antigen presentation. We aim to delineate how targeting distinct receptors affects antigen presentation and vaccine efficacy, which will guide target selection for future therapeutic vaccine development.

4.
Eur J Immunol ; 51(4): 835-847, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33349928

RESUMEN

Autophagy has been reported to be involved in supporting antigen cross-presentation by dendritic cells (DCs). We have shown that DCs have the ability to store antigen for a prolonged time in endolysosomal compartments and thereby sustain MHCI antigen cross-presentation to CD8+ T cells. In the current study, we investigated the role of autophagy in long-term antigen presentation. We show that the autophagy machinery has a negative impact on storage of antigen in DCs. Atg5-/- DCs which are deficient in autophagy or DCs treated with common autophagy inhibitors showed enhanced antigen storage and antigen cross-presentation. This augmented antigen cross-presentation effect is independent of altered proteasome enzyme activity or MHCI surface expression on DCs. We visualized that the storage compartments are in close proximity to LC3 positive autophagosomes. Our results indicate that autophagosomes disrupt antigen storage in DCs and thereby regulate long-term MHCI cross-presentation.


Asunto(s)
Presentación de Antígeno/inmunología , Autofagia/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Autofagosomas/inmunología , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/inmunología , Proteína 5 Relacionada con la Autofagia/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular , Reactividad Cruzada/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/metabolismo , Wortmanina/farmacología
5.
J Nanobiotechnology ; 20(1): 64, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109860

RESUMEN

BACKGROUND: While immune checkpoint inhibitors such as anti-PD-L1 antibodies have revolutionized cancer treatment, only subgroups of patients show durable responses. Insight in the relation between clinical response, PD-L1 expression and intratumoral localization of PD-L1 therapeutics could improve patient stratification. Therefore, we present the modular synthesis of multimodal antibody-based imaging tools for multiscale imaging of PD-L1 to study intratumoral distribution of PD-L1 therapeutics. RESULTS: To introduce imaging modalities, a peptide containing a near-infrared dye (sulfo-Cy5), a chelator (DTPA), an azide, and a sortase-recognition motif was synthesized. This peptide and a non-fluorescent intermediate were used for site-specific functionalization of c-terminally sortaggable mouse IgG1 (mIgG1) and Fab anti-PD-L1. To increase the half-life of the Fab fragment, a 20 kDa PEG chain was attached via strain-promoted azide-alkyne cycloaddition (SPAAC). Biodistribution and imaging studies were performed with 111In-labeled constructs in 4T1 tumor-bearing mice. Comparing our site-specific antibody-conjugates with randomly conjugated antibodies, we found that antibody clone, isotype and method of DTPA conjugation did not change tumor uptake. Furthermore, addition of sulfo-Cy5 did not affect the biodistribution. PEGylated Fab fragment displayed a significantly longer half-life compared to unPEGylated Fab and demonstrated the highest overall tumor uptake of all constructs. PD-L1 in tumors was clearly visualized by SPECT/CT, as well as whole body fluorescence imaging. Immunohistochemistry staining of tumor sections demonstrated that PD-L1 co-localized with the fluorescent and autoradiographic signal. Intratumoral localization of the imaging agent could be determined with cellular resolution using fluorescent microscopy. CONCLUSIONS: A set of molecularly defined multimodal antibody-based PD-L1 imaging agents were synthesized and validated for multiscale monitoring of PD-L1 expression and localization. Our modular approach for site-specific functionalization could easily be adapted to other targets.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Inmunoconjugados/metabolismo , Inmunohistoquímica , Ratones , Neoplasias/diagnóstico por imagen , Distribución Tisular
6.
J Enzyme Inhib Med Chem ; 37(1): 2566-2573, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36120947

RESUMEN

Tumour-associated macrophages (TAMs) support tumour development and have emerged as important regulators of therapeutic response to cytostatic agents. To target TAMs, we have developed a novel drug delivery approach which induces drug release as it inhibits cysteine cathepsin activity. This inhibitory prodrug (IPD) approach establishes a self-regulated system where drug release stops after all cysteine cathepsins are inhibited. This could improve the therapeutic window for drugs with severe side effects. We demonstrate and characterise this self-regulation concept with a fluorogenic IPD model. Next, we applied this IPD strategy to deliver cytotoxic drugs, as doxorubicin and monomethyl auristatin E, which are efficiently released and dose-dependently eliminate RAW264.7 macrophages. Lastly, by exploiting the increased cathepsin activity in TAM-like M2-polarised primary macrophages, we show that IPD-Dox selectively eliminates M2 over M1 macrophages. This demonstrates the potential of our IPD strategy for selective drug delivery and modulation of the tumour microenvironment.


Asunto(s)
Citostáticos , Profármacos , Catepsinas , Cisteína , Doxorrubicina/farmacología , Liberación de Fármacos , Profármacos/farmacología
7.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955841

RESUMEN

Regulatory T cells (Tregs) are major drivers behind immunosuppressive mechanisms and present a major hurdle for cancer therapy. Tregs are characterized by a high expression of CD25, which is a potentially valuable target for Treg depletion to alleviate immune suppression. The preclinical anti-CD25 (αCD25) antibody, clone PC-61, has met with modest anti-tumor activity due to its capacity to clear Tregs from the circulation and lymph nodes, but not those that reside in the tumor. The optimization of the Fc domain of this antibody clone has been shown to enhance the intratumoral Treg depletion capacity. Here, we generated a stable cell line that produced optimized recombinant Treg-depleting antibodies. A genome engineering strategy in which CRISPR-Cas9 was combined with homology-directed repair (CRISPR-HDR) was utilized to optimize the Fc domain of the hybridoma PC-61 for effector functions by switching it from its original rat IgG1 to a mouse IgG2a isotype. In a syngeneic tumor mouse model, the resulting αCD25-m2a (mouse IgG2a isotype) antibody mediated the effective depletion of tumor-resident Tregs, leading to a high effector T cell (Teff) to Treg ratio. Moreover, a combination of αCD25-m2a and an αPD-L1 treatment augmented tumor eradication in mice, demonstrating the potential for αCD25 as a cancer immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Depleción Linfocítica/métodos , Ratones , Neoplasias/metabolismo , Ratas
8.
Angew Chem Int Ed Engl ; 61(41): e202207508, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35993914

RESUMEN

Increased levels of tumor-associated macrophages (TAMs) are indicators of poor prognosis in most cancers. Although antibodies and small molecules blocking the recruitment of macrophages to tumors are under evaluation as anticancer therapies, these strategies are not specific for macrophage subpopulations. Herein we report the first enzyme-activatable chemokine conjugates for effective targeting of defined macrophage subsets in live tumors. Our constructs exploit the high expression of chemokine receptors (e.g., CCR2) and the activity of cysteine cathepsins in TAMs to target these cells selectively over other macrophages and immune cells (e.g., neutrophils, T cells, B cells). Furthermore, we demonstrate that cathepsin-activatable chemokines are compatible with both fluorescent and therapeutic cargos, opening new avenues in the design of targeted theranostic probes for immune cells in the tumor microenvironment.


Asunto(s)
Cisteína , Macrófagos Asociados a Tumores , Catepsinas , Quimiocinas , Receptores de Quimiocina , Microambiente Tumoral
9.
Immunology ; 164(3): 494-506, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34110622

RESUMEN

An exclusive feature of dendritic cells (DCs) is their capacity to present exogenous antigens by MHC class I molecules, called cross-presentation. Here, we show that protein antigen can be conserved in mature murine DCs for several days in a lysosome-like storage compartment, distinct from MHC class II and early endosomal compartments, as an internal source for the supply of MHC class I ligands. Using two different uptake routes via Fcγ receptors and C-type lectin receptors, we could show that antigens were routed towards the same endolysosomal compartments after 48 h. The antigen-containing compartments lacked co-expression of molecules involved in MHC class I processing and presentation including TAP and proteasome subunits as shown by single-cell imaging flow cytometry. Moreover, we observed the absence of cathepsin S but selective co-localization of active cathepsin X with protein antigen in the storage compartments. This indicates cathepsin S-independent antigen degradation and a novel but yet undefined role for cathepsin X in antigen processing and cross-presentation by DCs. In summary, our data suggest that these antigen-containing compartments in DCs can conserve protein antigens from different uptake routes and contribute to long-lasting antigen cross-presentation.


Asunto(s)
Antígenos/metabolismo , Reactividad Cruzada , Células Dendríticas/inmunología , Lectinas Tipo C/metabolismo , Receptores de IgG/metabolismo , Animales , Presentación de Antígeno , Antígenos/inmunología , Catepsinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Endosomas/inmunología , Endosomas/metabolismo , Endosomas/ultraestructura , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Modelos Animales , Células 3T3 NIH , Cultivo Primario de Células
10.
Bioconjug Chem ; 32(2): 301-310, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33476135

RESUMEN

Functionalized antibodies and antibody fragments have found applications in the fields of biomedical imaging, theranostics, and antibody-drug conjugates (ADC). In addition, therapeutic and theranostic approaches benefit from the possibility to deliver more than one type of cargo to target cells, further challenging stochastic labeling strategies. Thus, bioconjugation methods to reproducibly obtain defined homogeneous conjugates bearing multiple different cargo molecules, without compromising target affinity, are in demand. Here, we describe a straightforward CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to secrete Fab' fragments bearing two distinct site-specific labeling motifs, which can be separately modified by two different sortase A mutants. We show that sequential genetic editing of the heavy chain (HC) and light chain (LC) loci enables the generation of a stable cell line that secretes a dual tagged Fab' molecule (DTFab'), which can be easily isolated. To demonstrate feasibility, we functionalized the DTFab' with two distinct cargos in a site-specific manner. This technology platform will be valuable in the development of multimodal imaging agents, theranostics, and next-generation ADCs.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Hibridomas/química , Fragmentos Fab de Inmunoglobulinas/química , Anticuerpos Monoclonales/química , Inmunoconjugados/química , Procesos Estocásticos
11.
J Am Chem Soc ; 141(8): 3507-3514, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30689386

RESUMEN

Irreversible covalent inhibitors can have a beneficial pharmacokinetic/pharmacodynamics profile but are still often avoided due to the risk of indiscriminate covalent reactivity and the resulting adverse effects. To overcome this potential liability, we introduced an alkyne moiety as a latent electrophile into small molecule inhibitors of cathepsin K (CatK). Alkyne-based inhibitors do not show indiscriminate thiol reactivity but potently inhibit CatK protease activity by formation of an irreversible covalent bond with the catalytic cysteine residue, confirmed by crystal structure analysis. The rate of covalent bond formation ( kinact) does not correlate with electrophilicity of the alkyne moiety, indicative of a proximity-driven reactivity. Inhibition of CatK-mediated bone resorption is validated in human osteoclasts. Together, this work illustrates the potential of alkynes as latent electrophiles in small molecule inhibitors, enabling the development of irreversible covalent inhibitors with an improved safety profile.


Asunto(s)
Alquinos/farmacología , Catepsina K/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Alquinos/química , Catepsina K/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Humanos , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química
12.
Biomacromolecules ; 20(7): 2587-2597, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150222

RESUMEN

Polymer brushes are extensively used for the preparation of bioactive surfaces. They form a platform to attach functional (bio)molecules and control the physicochemical properties of the surface. These brushes are nearly exclusively prepared from flexible polymers, even though much stiffer brushes from semiflexible polymers are frequently found in nature, which exert bioactive functions that are out of reach for flexible brushes. Synthetic semiflexible polymers, however, are very rare. Here, we use polyisocyanopeptides (PICs) to prepare high-density semiflexible brushes on different substrate geometries. For bioconjugation, we developed routes with two orthogonal click reactions, based on the strain-promoted azide-alkyne cycloaddition reaction and the (photoactivated) tetrazole-ene cycloaddition reaction. We found that for high brush densities, multiple bonds between the polymer and the substrate are necessary, which was achieved in a block copolymer strategy. Whether the desired biomolecules are conjugated to the PIC polymer before or after brush formation depends on the dimensions and required densities of the biomolecules and the curvature of the substrate. In either case, we provide mild, aqueous, and highly modular reaction strategies, which make PICs a versatile addition to the toolbox for generating semiflexible bioactive polymer brush surfaces.


Asunto(s)
Reacción de Cicloadición , Péptidos/química , Péptidos/síntesis química , Polimerizacion , Propiedades de Superficie
13.
Small ; 14(15): e1703539, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29493121

RESUMEN

The activation of tumor-specific effector immune cells is key for successful immunotherapy and vaccination is a powerful strategy to induce such adaptive immune responses. However, the generation of effective anticancer vaccines is challenging. To overcome these challenges, a novel straight-forward strategy of adjuvant-induced tumor antigen assembly to generate nanovaccines with superior antigen/adjuvant loading efficiency is developed. To protect nanovaccines in circulation and to introduce additional functionalities, a biocompatible polyphenol coating is installed. The resulting functionalizable nanovaccines are equipped with a pH (low) insertion peptide (pHLIP) to facilitate endolysosomal escape and to promote cytoplasmic localization, with the aim to enhance cross-presentation of the antigen by dendritic cells to effectively activate CD8+ T cell. The results demonstrate that pHLIP-functionalized model nanovaccine can induce endolysosomal escape and enhance CD8+ T cell activation both in vitro and in vivo. Furthermore, based on the adjuvant-induced antigen assembly, nanovaccines of the clinically relevant tumor-associated antigen NY-ESO-1 are generated and show excellent capacity to elicit NY-ESO-1-specific CD8+ T cell activation, demonstrating a high potential of this functionalizable nanovaccine formulation strategy for clinical applications.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/inmunología , Adyuvantes Inmunológicos , Línea Celular , Humanos , Cinética , Activación de Linfocitos/fisiología , Polifenoles/química
14.
Bioconjug Chem ; 29(3): 587-603, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29378134

RESUMEN

Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.


Asunto(s)
Adyuvantes Inmunológicos/química , Receptores Toll-Like/agonistas , Vacunas Sintéticas/química , Inmunidad Adaptativa , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/farmacología , Animales , Técnicas de Química Sintética/métodos , Humanos , Inmunidad Innata , Modelos Moleculares , Receptores Toll-Like/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología
15.
FASEB J ; 31(10): 4286-4294, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28596234

RESUMEN

Deficiency of the cysteine protease inhibitor cystatin M/E (Cst6) in mice leads to disturbed epidermal cornification, impaired barrier function, and neonatal lethality. We report the rescue of the lethal skin phenotype of ichq (Cst6-deficient; Cst6-/-) mice by transgenic, epidermis-specific, reexpression of Cst6 under control of the human involucrin (INV) promoter. Rescued Tg(INV-Cst6)Cst6ichq/ichq mice survive the neonatal phase, but display severe eye pathology and alopecia after 4 mo. We observed keratitis and squamous metaplasia of the corneal epithelium, comparable to Cst6-/-Ctsl+/- mice, as we have reported in other studies. We found the INV promoter to be active in the hair follicle infundibulum; however, we did not observe Cst6 protein expression in the lower regions of the hair follicle in Tg(INV-Cst6)Cst6ichq/ichq mice. This result suggests that unrestricted activity of proteases is involved in disturbance of hair follicle biology, eventually leading to baldness. Using quenched activity-based probes, we identified mouse cathepsin B (CtsB), which is expressed in the lower regions of the hair follicle, as an additional target of mouse Cst6. These data suggest that Cst6 is necessary to control CtsB activity in hair follicle morphogenesis and highlight Cst6-controlled proteolytic pathways as targets for preventing hair loss.-Oortveld, M. A. W., van Vlijmen-Willems, I. M. J. J., Kersten, F. F. J., Cheng, T., Verdoes, M., van Erp, P. E. J., Verbeek, S., Reinheckel, T., Hendriks, W. J. A. J., Schalkwijk, J., Zeeuwen, P. L. J. M. Cathepsin B as a potential cystatin M/E target in the mouse hair follicle.


Asunto(s)
Catepsina B/metabolismo , Diferenciación Celular/fisiología , Cistatina M/metabolismo , Epidermis/metabolismo , Folículo Piloso/metabolismo , Alopecia/metabolismo , Animales , Catepsina L/metabolismo , Células Cultivadas , Cistatina M/deficiencia , Humanos , Ratones , Piel/metabolismo
16.
Molecules ; 24(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577495

RESUMEN

The tumour microenvironment (TME) is composed of extracellular matrix and non-mutated cells supporting tumour growth and development. Tumour-associated macrophages (TAMs) are among the most abundant immune cells in the TME and are responsible for the onset of a smouldering inflammation. TAMs play a pivotal role in oncogenic processes as tumour proliferation, angiogenesis and metastasis, and they provide a barrier against the cytotoxic effector function of T lymphocytes and natural killer (NK) cells. However, TAMs are highly plastic cells that can adopt either pro- or anti-inflammatory roles in response to environmental cues. Consequently, TAMs represent an attractive target to recalibrate immune responses in the TME. Initial TAM-targeted strategies, such as macrophage depletion or disruption of TAM recruitment, have shown beneficial effects in preclinical models and clinical trials. Alternatively, reprogramming TAMs towards a proinflammatory and tumouricidal phenotype has become an attractive strategy in immunotherapy. This work summarises the molecular wheelwork of macrophage biology and presents an overview of molecular strategies to repolarise TAMs in immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Macrófagos/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Humanos
17.
Biochim Biophys Acta ; 1864(1): 130-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25960278

RESUMEN

Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.


Asunto(s)
Dominio Catalítico , Espacio Intracelular/enzimología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Animales , Biocatálisis , Pruebas de Enzimas/métodos , Modelos Biológicos , Modelos Moleculares , Sondas Moleculares/química , Especificidad por Sustrato
19.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G548-60, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27514475

RESUMEN

Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68(+) macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Macrófagos/enzimología , Pancreatitis/enzimología , Animales , Ceruletida/toxicidad , Cisteína Endopeptidasas/genética , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pancreatitis/inducido químicamente
20.
J Am Chem Soc ; 137(14): 4771-7, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25785540

RESUMEN

The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow-derived immune cells and identified vesicles containing exclusively cathepsin S activity. This observation demonstrates the value of our complementary cathepsin probes and provides evidence for the existence of specific localization of cathepsin S activity in dendritic cells.


Asunto(s)
Catepsinas/química , Catepsinas/metabolismo , Diseño de Fármacos , Colorantes Fluorescentes/química , Rayos Infrarrojos , Imagen Óptica/métodos , Animales , Color , Células Dendríticas/enzimología , Humanos , Neoplasias Mamarias Experimentales/enzimología , Ratones , Células RAW 264.7 , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA