Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Basic Res Cardiol ; 119(1): 133-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148348

RESUMEN

Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Femenino , Animales , Ratones , Glucosa/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Cardiomegalia/metabolismo , Hipertensión/complicaciones , Obesidad/complicaciones , Ácidos Grasos/metabolismo , Metabolismo Energético
2.
PLoS Pathog ; 18(1): e1010171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025963

RESUMEN

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Pulmón/virología , SARS-CoV-2/fisiología , Internalización del Virus , Adulto , Animales , Antivirales/farmacología , COVID-19/inmunología , COVID-19/patología , Células Cultivadas , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Drogas en Investigación/farmacología , Drogas en Investigación/uso terapéutico , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Inflamación/patología , Inflamación/terapia , Inflamación/virología , Pulmón/patología , SARS-CoV-2/efectos de los fármacos , Células Vero , Internalización del Virus/efectos de los fármacos
3.
Clin Sci (Lond) ; 137(1): 87-104, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36524468

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Sistema Renina-Angiotensina , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ramipril/farmacología , Ramipril/uso terapéutico , Proteómica , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834836

RESUMEN

Endothelin (ET) is found to be increased in kidney disease secondary to hyperglycaemia, hypertension, acidosis, and the presence of insulin or proinflammatory cytokines. In this context, ET, via the endothelin receptor type A (ETA) activation, causes sustained vasoconstriction of the afferent arterioles that produces deleterious effects such as hyperfiltration, podocyte damage, proteinuria and, eventually, GFR decline. Therefore, endothelin receptor antagonists (ERAs) have been proposed as a therapeutic strategy to reduce proteinuria and slow the progression of kidney disease. Preclinical and clinical evidence has revealed that the administration of ERAs reduces kidney fibrosis, inflammation and proteinuria. Currently, the efficacy of many ERAs to treat kidney disease is being tested in randomized controlled trials; however, some of these, such as avosentan and atrasentan, were not commercialized due to the adverse events related to their use. Therefore, to take advantage of the protective properties of the ERAs, the use of ETA receptor-specific antagonists and/or combining them with sodium-glucose cotransporter 2 inhibitors (SGLT2i) has been proposed to prevent oedemas, the main ERAs-related deleterious effect. The use of a dual angiotensin-II type 1/endothelin receptor blocker (sparsentan) is also being evaluated to treat kidney disease. Here, we reviewed the main ERAs developed and the preclinical and clinical evidence of their kidney-protective effects. Additionally, we provided an overview of new strategies that have been proposed to integrate ERAs in kidney disease treatment.


Asunto(s)
Antagonistas de los Receptores de Endotelina , Enfermedades Renales , Humanos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Antagonistas de los Receptores de la Endotelina A , Endotelina-1 , Endotelinas , Riñón , Enfermedades Renales/tratamiento farmacológico , Proteinuria/tratamiento farmacológico , Receptor de Endotelina A
6.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361612

RESUMEN

Treatments with sodium-glucose 2 cotransporter inhibitors (SGLT2i) or endothelin receptor antagonists (ERA) have shown cardiorenal protective effects. The present study aimed to evaluate the cardiorenal beneficial effects of the combination of SGLT2i and ERA on top of renin-angiotensin system (RAS) blockade. Type 2 diabetic mice (db/db) were treated with different combinations of an SGLT2i (empagliflozin), an ERA (atrasentan), and an angiotensin-converting enzyme inhibitor (ramipril) for 8 weeks. Vehicle-treated diabetic mice and non-diabetic mice were included as controls. Weight, blood glucose, blood pressure, and kidney and heart function were monitored during the study. Kidneys and heart were collected for histological examination and to study the intrarenal RAS. Treatment with empagliflozin alone or combined significantly decreased blood glucose compared to vehicle-treated db/db. The dual and triple therapies achieved significantly greater reductions in diastolic blood pressure than ramipril alone. Compared to vehicle-treated db/db, empagliflozin combined with ramipril or in triple therapy significantly prevented GFR increase, but only the triple combination exerted greater protection against podocyte loss. In the heart, empagliflozin alone or combined reduced cardiac isovolumetric relaxation time (IVRT) and left atrium (LA) diameter as compared to vehicle-treated db/db. However, only the triple therapy was able to reduce cardiomyocyte area. Importantly, the add-on triple therapy further enhanced the intrarenal ACE2/Ang(1-7)/Mas protective arm of the RAS. These data suggest that triple therapy with empagliflozin, atrasentan and ramipril show synergistic cardiorenal protective effects in a type 2 diabetic mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sistema Renina-Angiotensina , Ratones , Animales , Transportador 2 de Sodio-Glucosa , Atrasentán/farmacología , Antagonistas de los Receptores de Endotelina/farmacología , Glucemia , Ramipril/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptores de Endotelina
7.
Kidney Blood Press Res ; 46(4): 452-459, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34098555

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) patients infected with COVID-19 are at risk of serious complications such as hospitalization and death. The prognosis and lethality of COVID-19 infection in patients with established kidney disease has not been widely studied. METHODS: Data included patients who underwent kidney biopsy at the Vall d'Hebron Hospital between January 2013 and February 2020 with COVID-19 diagnosis during the period from March 1 to May 15, 2020. RESULTS: Thirty-nine (7%) patients were diagnosed with COVID-19 infection. Mean age was 63 ± 15 years and 48.7% were male. Hypertension was present in 79.5%, CKD without renal replacement therapy in 76.9%, and cardiovascular disease in 64.1%. Nasopharyngeal swab was performed in 26 patients; older (p = 0.01), hypertensive (p = 0.005), and immunosuppressed (p = 0.01) patients, those using RAS-blocking drugs (p = 0.04), and those with gastrointestinal symptoms (p = 0.02) were more likely to be tested for CO-VID-19. Twenty-two patients required hospitalization and 15.4% died. In bivariate analysis, mortality was associated with older age (p = 0.03), cardiovascular disease (p = 0.05), chronic obstructive pulmonary disease (p = 0.05), and low hemoglobin levels (p = 0.006). Adjusted Cox regression showed that low hemoglobin levels at admission had 1.81 greater risk of mortality. CONCLUSIONS: Patients with CO-VID-19 infection and kidney disease confirmed by kidney biopsy presented a mortality of 15.4%. Swab test for COVID-19 was more likely to be performed in older, hypertensive, and immunosuppressed patients, those using RAS-blocking drugs, and those with gastrointestinal symptoms. Low hemoglobin is a risk factor for mortality.


Asunto(s)
COVID-19/complicaciones , Insuficiencia Renal Crónica/complicaciones , Factores de Edad , Anciano , Anciano de 80 o más Años , Biopsia , COVID-19/mortalidad , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/mortalidad , Femenino , Hemoglobinas/análisis , Hospitalización/estadística & datos numéricos , Humanos , Hipertensión/complicaciones , Hipertensión/epidemiología , Terapia de Inmunosupresión , Masculino , Persona de Mediana Edad , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/patología , Terapia de Reemplazo Renal , Sistema Renina-Angiotensina/efectos de los fármacos
8.
Nephrol Dial Transplant ; 35(Suppl 1): i13-i23, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32003834

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin-angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin-angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Transportador 2 de Sodio-Glucosa/química , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Humanos , Pronóstico
9.
Int J Mol Sci ; 21(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438732

RESUMEN

Diabetes prevalence is constantly increasing and, nowadays, it affects more than 350 million people worldwide. Therefore, the prevalence of diabetic nephropathy (DN) has also increased, becoming the main cause of end-stage renal disease (ESRD) in the developed world. DN is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension, mesangial matrix expansion, glomerular basement membrane thickening, and tubulointerstitial fibrosis. The therapeutic advances in the last years have been able to modify and delay the natural course of diabetic kidney disease (DKD). Nevertheless, there is still an urgent need to characterize the pathways that are involved in DN, identify risk biomarkers and prevent kidney failure in diabetic patients. Rodent models provide valuable information regarding how DN is set and its progression through time. Despite the utility of these models, kidney disease progression depends on the diabetes induction method and susceptibility to diabetes of each experimental strain. The classical DN murine models (Streptozotocin-induced, Akita, or obese type 2 models) do not develop all of the typical DN features. For this reason, many models have been crossed to a susceptible genetic background. Knockout and transgenic strains have also been created to generate more robust models. In this review, we will focus on the description of the new DN rodent models and, additionally, we will provide an overview of the available methods for renal phenotyping.


Asunto(s)
Nefropatías Diabéticas/patología , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Tasa de Filtración Glomerular , Humanos , Riñón/patología , Riñón/fisiopatología , Podocitos/patología
11.
Clin Kidney J ; 16(2): 272-284, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751625

RESUMEN

Background: Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods: In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results: uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions: Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.

12.
J Clin Med ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983419

RESUMEN

BACKGROUND: Vaccination is a known trigger for the appearance of immune-mediated glomerulopathies (IMG). The appearance of IMG after SARS-CoV-2 vaccination with suspected causality has been described. Our aim is to analyze the incidence of IMG flares before and after SARS-CoV-2 vaccination in our center. METHODS: All persons with native kidney biopsy (KB) from January 2019 to March 2022 in our center were included in the study. We compared the incidence of IMG before and after the start of vaccination. We also collected information about whether the patients had received a SARS-CoV-2 vaccine or have suffered from COVID in the six weeks before the IMG. We also evaluated the analytical characteristics of the outbreaks. RESULTS: A total of 386 KB were studied. Of them, 86/218 (39.4%) were IMG performed pre- and 85/168 (50.6%) post-SV (029). The incidence of idiopathic nephrotic syndrome (INS), studied separately, was also significantly increased post-vaccination (n = 18 (10.7%)) compared to pre-vaccination (n = 11 (5%)) (p = 0.036). There were no differences in the incidence of vasculitis or IgA nephropathy. Up to 17 (20%) flares occurred 6 weeks before SARS-CoV-2 vaccination and only 2 (2.4%) within the first 6 weeks after SARS-CoV-2 infection. Within those 17 flares, the most common diagnosis was IgAN (n = 5 (29.4%)); a total of 14 (82.4%) received an mRNA vaccine and 9 (52.9%) took place after the 1st vaccine dose. There were 13 cases of minimal change disease (MCD) with debut/recurrence pre-SV and 20 MCD with debut/recurrence post-SV (p = 0.002). CONCLUSIONS: The incidence of IMG, INS and MCD flares in our center increased significantly after SARS-CoV-2 vaccination. Importantly, 20% of IMG flares took place within the first 6 weeks after receiving a vaccine dose, with the first dose being the riskiest one and IgAN the most frequent diagnosis.

13.
Biomolecules ; 12(1)2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-35053290

RESUMEN

The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS modulate cell-signaling pathways and cellular processes fundamental to normal cell function. However, overproduction of oxidative species can lead to oxidative stress (OS) that is pathological. Oxidative stress is a main contributor to diabetic kidney disease (DKD) onset. In the kidney, the proximal tubular cells require a high energy supply to reabsorb proteins, metabolites, ions, and water. In a diabetic milieu, glucose-induced toxicity promotes oxidative stress and mitochondrial dysfunction, impairing tubular function. Increased glucose level in urine and ROS enhance the activity of sodium/glucose co-transporter type 2 (SGLT2), which in turn exacerbates OS. SGLT2 inhibitors have demonstrated clear cardiovascular benefits in DKD which may be in part ascribed to the generation of a beneficial equilibrium between oxidant and antioxidant mechanisms.


Asunto(s)
Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Antioxidantes/metabolismo , Antioxidantes/farmacología , Nefropatías Diabéticas/metabolismo , Humanos , Riñón/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
14.
Peptides ; 147: 170697, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801627

RESUMEN

The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Apelina/análogos & derivados , Apelina/farmacología , Receptores de Apelina/agonistas , Bradiquinina/metabolismo , Sistema Cardiovascular/metabolismo , Femenino , Humanos , Preeclampsia/metabolismo , Embarazo
15.
J Clin Med ; 11(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268550

RESUMEN

BACKGROUND AND OBJECTIVES: Kidney biopsy (KB) is the "gold standard" for the diagnosis of nephropathies and it is a diagnostic tool that presents a low rate of complications. Nowadays, biobank collections of renal tissue of patients with proven renal pathology are essential for research in nephrology. To provide enough tissue for the biobank collection, it is usually needed to obtain an extra kidney core at the time of kidney biopsy. The objective of our study is to evaluate the complications after KB and to analyze whether obtaining an extra core increases the risk of complications. MATERIAL AND METHODS: Prospective observational study of KBs performed at Vall d'Hebron Hospital between 2019 and 2020. All patients who accepted to participate to our research biobank of native kidney biopsies were included to the study. Clinical and laboratory data were reviewed and we studied risk factors associated with complications. RESULTS: A total of 221 patients were included, mean age 56.6 (±16.8) years, 130 (58.8%) were men, creatinine was 2.24 (±1.94) mg/dL, proteinuria 1.56 (0.506-3.590) g/24 h, hemoglobin 12.03 (±2.3) g/dL, INR 0.99 (±0.1), and prothrombin time (PT) 11.86 (±1.2) s. A total of 38 patients (17.2%) presented complications associated with the procedure: 13.1% were minor complications, 11.3% (n = 25) required blood transfusion, 1.4% (n = 3) had severe hematomas, 2.3% (n = 5) required embolization, and 0.5% (n = 1) presented arterio-venous fistula. An increased risk for complication was independently associated with obtaining a single kidney core (vs. 2 and 3 cores) (p = 0.021). CONCLUSIONS: KB is an invasive and safe procedure with a low percentage of complications. Obtaining an extra kidney core for research does not increase the risk of complications during the intervention, which remains low in concordance with previously published reports.

16.
Clin Kidney J ; 15(9): 1698-1704, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35999963

RESUMEN

Novel coronavirus disease infection (coronavirus disease 2019, COVID-19) was declared a global pandemic in March 2020 and since then has become a major public health problem. The prevalence of COVID-19 infection and acute kidney injury (AKI) is variable depending on several factors such as race/ethnicity and severity of illness. The pathophysiology of renal involvement in COVID-19 infection is not entirely clear, but it could be in part explained by the viral tropism in the kidney parenchyma. AKI in COVID-19 infection can be either by direct invasion of the virus or as a consequence of immunologic response. Diverse studies have focused on the effect of COVID-19 on glomerulonephritis (GN) patients or the 'novo' GN; however, the effect of COVID-19 in acute tubulointerstitial nephritis (ATIN) has been scarcely studied. In this article, we present five cases with different spectrums of COVID-19 infection and ATIN that may suggest that recent diagnosis of ATIN is accompanied by a worse clinical prognosis in comparison with long-term diagnosed ATIN.

17.
Front Med (Lausanne) ; 8: 655871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928108

RESUMEN

Obesity is one of the epidemics of our era. Its prevalence is higher than 30% in the U.S. and it is estimated to increase by 50% in 2030. Obesity is associated with a higher risk of all-cause mortality and it is known to be a cause of chronic kidney disease (CKD). Typically, obesity-related glomerulopathy (ORG) is ascribed to renal hemodynamic changes that lead to hyperfiltration, albuminuria and, finally, impairment in glomerular filtration rate due to glomerulosclerosis. Though not only hemodynamics are responsible for ORG: adipokines could cause local effects on mesangial and tubular cells and podocytes promoting maladaptive responses to hyperfiltration. Furthermore, hypertension and type 2 diabetes mellitus, two conditions generally associated with obesity, are both amplifiers of obesity injury in the renal parenchyma, as well as complications of overweight. As in the native kidney, obesity is also related to worse outcomes in kidney transplantation. Despite its impact in CKD and cardiovascular morbility and mortality, therapeutic strategies to fight against obesity-related CKD were limited for decades to renin-angiotensin blockade and bariatric surgery for patients who accomplished very restrictive criteria. Last years, different drugs have been approved or are under study for the treatment of obesity. Glucagon-like peptide-1 receptor agonists are promising in obesity-related CKD since they have shown benefits in terms of losing weight in obese patients, as well as preventing the onset of macroalbuminuria and slowing the decline of eGFR in type 2 diabetes. These new families of glucose-lowering drugs are a new frontier to be crossed by nephrologists to stop obesity-related CKD progression.

18.
J Clin Med ; 10(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198818

RESUMEN

Diabetic kidney disease (DKD) is one of the most relevant complications of type 2 diabetes and dramatically increases the cardiovascular risk in these patients. Currently, DKD is severely infra-diagnosed, or its diagnosis is usually made at advanced stages of the disease. During the last decade, new drugs have demonstrated a beneficial effect in terms of cardiovascular and renal protection in type 2 diabetes, supporting the crucial role of an early DKD diagnosis to permit the use of new available therapeutic strategies. Moreover, cardiovascular and renal outcome trials, developed to study these new drugs, are based on diverse cardiovascular and renal simple and composite endpoints, which makes difficult their interpretation and the comparison between them. In this article, DKD diagnosis is reviewed, focusing on albuminuria and the recommendations for glomerular filtration rate measurement. Furthermore, cardiovascular and renal endpoints used in classical and recent cardiovascular outcome trials are assessed in a pragmatic way.

19.
J Clin Med ; 10(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069888

RESUMEN

A major complication of primary focal segmental glomerulosclerosis (FSGS) is its recurrence after kidney transplantation that happens in 30 to 40% of the patients. The diagnosis of these relapses is not always easy as the histological lesions are not highly specific and appear after the proteinuria increase. Currently, there are no accurate biomarkers to detect FSGS recurrence. Our group identified a modified form of Apolipoprotein A-I (ApoA-I), named ApoA-Ib, specifically present in the urine of recurrent FSGS patients after kidney transplantation. Aberrant forms of ApoA-I have also been described in the urine of native primary FSGS patients; this feature has been associated with prominent staining of ApoA-I at the apical membrane of the tubular cells. In this study, we aim to analyze the ApoA-I distribution in kidney allograft biopsies of recurrent FSGS patients. We detected ApoA-I by immunohistochemistry in kidney allograft biopsies of patients with FSGS relapse after kidney transplantation and in kidney allograft biopsies of patients with a disease different from FSGS in the native kidney (non-FSGS). In recurrent FSGS patients, ApoA-I was prominently localized at the brush border of the tubular cells, while in the non-FSGS patients, ApoA-I was found along the cytoplasm of the tubular cells. The localization of ApoA-I at the brush border of the tubular cells is a specific feature of primary FSGS in relapse. This suggests that ApoA-I staining in kidney biopsies, coupled with ApoA-Ib measurement in urine, could be used as a diagnostic tool of primary FSGS relapse after kidney transplantation due to its highly specific tubular distribution.

20.
J Clin Med ; 10(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34300188

RESUMEN

Age and chronic kidney disease have been described as mortality risk factors for coronavirus disease 2019 (COVID-19). Currently, an important percentage of patients in haemodialysis are elderly. Herein, we investigated the impact of age on mortality among haemodialysis patients with COVID-19. Data was obtained from the Spanish COVID-19 chronic kidney disease (CKD) Working Group Registry. From 18 March 2020 to 27 August 2020, 930 patients on haemodialysis affected by COVID-19 were included in the Registry. A total of 254 patients were under 65 years old and 676 were 65 years or older (elderly group). Mortality was 25.1% higher (95% CI: 22.2-28.0%) in the elderly as compared to the non-elderly group. Death from COVID-19 was increased 6.2-fold in haemodialysis patients as compared to the mortality in the general population in a similar time frame. In the multivariate Cox regression analysis, age (hazard ratio (HR) 1.59, 95% CI: 1.31-1.93), dyspnea at presentation (HR 1.51, 95% CI: 1.11-2.04), pneumonia (HR 1.74, 95% CI: 1.10-2.73) and admission to hospital (HR 4.00, 95% CI: 1.83-8.70) were identified as independent mortality risk factors in the elderly haemodialysis population. Treatment with glucocorticoids reduced the risk of death (HR 0.68, 95% CI: 0.48-0.96). In conclusion, mortality is dramatically increased in elderly haemodialysis patients with COVID-19. Our results suggest that this high risk population should be prioritized in terms of protection and vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA