Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(4): 663-676, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149920

RESUMEN

Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-ß expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.


Asunto(s)
Cuerpos Extraños , Reacción a Cuerpo Extraño , Ratones , Animales , Reacción a Cuerpo Extraño/inducido químicamente , Reacción a Cuerpo Extraño/metabolismo , Células Gigantes de Cuerpo Extraño/metabolismo , Inflamación/metabolismo , Cuerpos Extraños/metabolismo , Prótesis e Implantes/efectos adversos , Ubiquitinación
2.
Purinergic Signal ; 19(3): 489-500, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439999

RESUMEN

Identification of new potential drug target proteins and their plausible mechanisms for stroke treatment is critically needed. We previously showed that genetic deletion and short-term pharmacological inhibition of P2X4, a purinergic receptor for adenosine triphosphate (ATP), provides acute cerebroprotection. However, potential mechanisms remain unknown. Therefore, we employed RNA-Seq technology to identify the gene expression profiles and pathway analysis followed by qPCR validation of differentially expressed genes (DEGs). This analysis identified roles of DEGs in certain biological processes responsible for P2X4R-dependent cerebroprotection after stroke. We subjected both young and aged male and female global P2X4 receptor knock out (P2X4RKO) and littermate WT (WT) mice to ischemic stroke. After three days, mice were sacrificed, and total RNA was isolated using Trizol and subjected to RNA-Seq and NanoString-mediated qPCR. DESeq2, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) were used to identify gene expression profiles and biological pathways. We found 2246 DEGs in P2X4R KO vs. WT tissue after stroke. Out of these DEGs, 1920 genes were downregulated and 325 genes were upregulated in P2X4R KO. GO/IPA analysis of the top 300 DEGs suggests an enrichment of inflammation and extracellular matrix component genes. qPCR validation of the top 30 DEGs revealed downregulation of two common age-independent genes in P2X4R KO mice: Interleukin-6 (Il-6), an inflammatory cytokine, and Cytotoxic T Lymphocyte-Associated Protein 2 alpha (Ctla2a), an immunosuppressive factor. These data suggest that P2X4R-mediated cerebroprotection after stroke is initiated by attenuation of immune modulatory pathways in both young and aged mice of both sexes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Masculino , Femenino , Animales , Receptores Purinérgicos P2X4/genética , Ratones Noqueados , Accidente Cerebrovascular/genética , Perfilación de la Expresión Génica
3.
Proc Natl Acad Sci U S A ; 114(28): E5673-E5682, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28645895

RESUMEN

Females show a varying degree of ischemic sensitivity throughout their lifespan, which is not fully explained by hormonal or genetic factors. Epidemiological data suggest that sex-specific life experiences such as pregnancy increase stroke risk. This work evaluated the role of parity on stroke outcome. Age-matched virgin (i.e., nulliparous) and multiparous mice were subjected to 60 min of reversible middle cerebral artery occlusion and evaluated for infarct volume, behavioral recovery, and inflammation. Using an established mating paradigm, fetal microchimeric cells present in maternal mice were also tracked after parturition and stroke. Parity was associated with sedentary behavior, weight gain, and higher triglyceride and cholesterol levels. The multiparous brain exhibited features of immune suppression, with dampened baseline microglial activity. After acute stroke, multiparous mice had smaller infarcts, less glial activation, and less behavioral impairment in the critical recovery window of 72 h. Behavioral recovery was significantly better in multiparous females compared with nulliparous mice 1 mo after stroke. This recovery was accompanied by an increase in poststroke angiogenesis that was correlated with improved performance on sensorimotor and cognitive tests. Multiparous mice had higher levels of VEGF, both at baseline and after stroke. GFP+ fetal cells were detected in the blood and migrated to areas of tissue injury where they adopted endothelial morphology 30 d after injury. Reproductive experience has profound and complex effects on neurovascular health and disease. Inclusion of female mice with reproductive experience in preclinical studies may better reflect the life-long patterning of ischemic stroke risk in women.


Asunto(s)
Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Paridad , Accidente Cerebrovascular/metabolismo , Animales , Conducta Animal , Peso Corporal , Isquemia Encefálica/patología , Movimiento Celular , Sistema Nervioso Central , Femenino , Terapia de Inmunosupresión , Infarto de la Arteria Cerebral Media/patología , Inflamación , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neovascularización Patológica , Parto , Embarazo , Factores de Riesgo , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
J Neuroinflammation ; 16(1): 40, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777093

RESUMEN

BACKGROUND: Ischemic stroke results in a robust inflammatory response within the central nervous system. As the immune-inhibitory CD200-CD200 receptor 1 (CD200R1) signaling axis is a known regulator of immune homeostasis, we hypothesized that it may play a role in post-stroke immune suppression after stroke. METHODS: In this study, we investigated the role of CD200R1-mediated signaling in stroke using CD200 receptor 1-deficient mice. Mice were subjected to a 60-min middle cerebral artery occlusion and evaluated at days 3 and 7, representing the respective peak and early resolution stages of neuroinflammation in this model of ischemic stroke. Infarct size and behavioral deficits were assessed at both time points. Central and peripheral cellular immune responses were measured using flow cytometry. Bacterial colonization was determined in lung tissue homogenates both after acute stroke and in an LPS model of systemic inflammation. RESULTS: In wild-type (WT) animals, CD200R1 was expressed on infiltrating monocytes and lymphocytes after stroke but was absent on microglia. Early after ischemia (72 h), CD200R1-knockout (KO) mice had significantly poorer survival rates and an enhanced susceptibility to spontaneous bacterial colonization of the respiratory tract compared to wild-type (WT) controls, despite no difference in infarct or neurological deficits. While the CNS inflammation was resolved by day 7 post-stroke in WT mice, brain-resident microglia and monocyte activation persisted in CD200R1-KO mice, accompanied by a delayed, augmented lymphocyte response. At this time point, CD200R1-KO mice displayed greater weight loss, more severe neurological deficits, and impaired motor function compared to WT. Systemically, CD200R1-KO mice exhibited signs of persistent infection including lymphopenia, T cell activation and memory conversion, and narrowing of the TCR repertoire. These findings were confirmed in a second model of acute neuroinflammation induced by systemic endotoxin challenge. CONCLUSION: This study defines an essential role of CD200-CD200R1 signaling in stroke. Loss of CD200R1 led to high mortality, increased rates of post-stroke infection, and enhanced entry of peripheral leukocytes into the brain after ischemia, with no increase in infarct size. This suggests that the loss of CD200 receptor leads to enhanced peripheral inflammation that is triggered by brain injury.


Asunto(s)
Antígenos CD/metabolismo , Infecciones Bacterianas/etiología , Encefalitis/etiología , Infarto de la Arteria Cerebral Media/fisiopatología , Receptores de Orexina/metabolismo , Recuperación de la Función/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Conducta de Enfermedad/efectos de los fármacos , Conducta de Enfermedad/fisiología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Comportamiento de Nidificación/fisiología , Receptores de Orexina/genética , Fagocitosis/fisiología , Trastornos Psicomotores/etiología , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Stroke ; 49(7): 1701-1707, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29866755

RESUMEN

BACKGROUND AND PURPOSE: Social isolation increases mortality and impairs recovery after stroke in clinical populations. These detrimental effects have been recapitulated in animal models, although the exact mechanism mediating these effects remains unclear. Dysregulation of microRNAs (miRNAs) occurs in both strokes as well as after social isolation, which trigger changes in many downstream genes. We hypothesized that miRNA regulation is involved in the detrimental effects of poststroke social isolation in aged animals. METHODS: We pair-housed 18-month-old C57BL/6 male mice for 2 weeks before a 60-minute right middle cerebral artery occlusion or sham surgery and then randomly assigned mice to isolation or continued pair housing immediately after surgery. We euthanized mice either at 3, 7, or 15 days after surgery and isolated the perilesional frontal cortex for whole microRNAome analysis. In an additional cohort, we treated mice 1 day after stroke onset with an in vivo-ready antagomiR-141 for 3 days. RESULTS: Using whole microRNAome analysis of 752 miRNAs, we identified miR-141-3p as a unique miRNA that was significantly upregulated in isolated mice in a time-dependent manner up to 2 weeks after stroke. Posttreatment with an antagomiR-141-3p reduced the postisolation-induced increase in miR-141-3p to levels almost equal to those of pair-housed stroke controls. This treatment significantly reduced mortality (by 21%) and normalized infarct volume and neurological scores in poststroke-isolated mice. Quantitative PCR analysis revealed a significant upregulation of Tgfßr1 (transforming growth factor beta receptor 1, a direct target of miR-141-3p) and Igf-1 (insulin-like growth factor 1) mRNA after treatment with antagomiR. Treatment also increased the expression of other pleiotropic cytokines such as Il-6 (interleukin 6) and Tnf-α (tumor necrosis factor-α), an indirect or secondary target) in brain tissue. CONCLUSIONS: miR-141-3p is increased with poststroke isolation. Inhibition of miR-141-3p improved mortality, neurological deficits, and decreased infarct volumes. Importantly, these therapeutic effects occurred in aged animals, the population most at risk for stroke and poststroke isolation.


Asunto(s)
Lóbulo Frontal/metabolismo , MicroARNs/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , MicroARNs/genética , Recuperación de la Función , Aislamiento Social , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/psicología
6.
Acta Neuropathol ; 136(1): 89-110, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29752550

RESUMEN

The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.


Asunto(s)
Envejecimiento , Citocinas/metabolismo , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/fisiopatología , Células Mieloides/patología , Neutrófilos/patología , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Médula Ósea/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Trastornos Neurológicos de la Marcha/etiología , Fuerza de la Mano/fisiología , Hemoglobinas/metabolismo , Suspensión Trasera/fisiología , Humanos , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Brain Behav Immun ; 66: 302-312, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28751018

RESUMEN

INTRODUCTION: Acute ischemic injury leads to severe neuronal loss. One of the key mechanisms responsible for this effect is inflammation, which is characterized by the activation of myeloid cells, including resident microglia and infiltrating monocytes/macrophages. P2X4 receptors (P2X4Rs) present on these immune cells modulate the inflammatory response. For example, excessive release of adenosine triphosphate during acute ischemic stroke triggers stimulation of P2X4Rs, leading to myeloid cell activation and proliferation and further exacerbating post-ischemic inflammation. In contrast, during recovery P2X4Rs activation on microglia leads to the release of brain-derived neurotrophic factor (BDNF), which alleviate depression, maintain synaptic plasticity and hasten post-stroke behavioral recovery. Therefore, we hypothesized that deletion of the P2X4R specifically from myeloid cells would have differential effects on acute versus chronic recovery following stroke. METHODS: We subjected global or myeloid-specific (MS) P2X4R knock-out (KO) mice and wild-type littermates of both sexes to right middle cerebral artery occlusion (60min). We performed histological, behavioral (sensorimotor and depressive), and biochemical (quantitative PCR and flow cytometry) analyses to determine the acute (three days after occlusion) and chronic (30days after occlusion) effects of receptor deletion. RESULTS: Global P2X4R deletion led to reduced infarct size in both sexes. In MS P2X4R KO mice, only females showed reduced infarct size, an effect that did not change with ovariectomy. MS P2X4R KO mice of both sexes showed swift recovery from sensorimotor deficits during acute recovery but exhibited a more pronounced post-stroke depressive behavior phenotype that was independent of infarct size. Quantitative PCR analysis of whole cell lysate as well as flow-sorted myeloid cells from the perilesional cortex showed increased cellular interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) mRNA levels but reduced plasma levels of these cytokines in MS P2X4R KO mice after stroke. The expression levels of BDNF and other depression-associated genes were reduced in MS P2X4R KO mice after stroke. CONCLUSIONS: P2X4R deletion protects against stroke acutely but predisposes to depression-like behavior chronically after stroke. Thus, a time-sensitive approach should be considered when targeting P2X4Rs after stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/metabolismo , Depresión/complicaciones , Receptores Purinérgicos P2X4/fisiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Animales , Conducta Animal , Encéfalo/patología , Isquemia Encefálica/complicaciones , Citocinas/metabolismo , Depresión/genética , Femenino , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Fenotipo , ARN Mensajero/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Recuperación de la Función , Accidente Cerebrovascular/complicaciones
8.
J Neurochem ; 138(6): 785-805, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27333343

RESUMEN

Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.


Asunto(s)
Enfermedades del Sistema Nervioso/patología , Sinapsis/patología , Adulto , Niño , Humanos , Enfermedades Neurodegenerativas/patología
9.
Mol Vis ; 22: 575-88, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27293375

RESUMEN

PURPOSE: The transient middle cerebral artery occlusion (MCAO) model of stroke is one of the most commonly used models to study focal cerebral ischemia. This procedure also results in the simultaneous occlusion of the ophthalmic artery that supplies the retina. Retinal cell death is seen days after reperfusion and leads to functional deficits; however, the mechanism responsible for this injury has not been investigated. Given that the eye may have a unique ocular immune response to an ischemic challenge, this study examined the inflammatory response to retinal ischemia in the MCAO model. METHODS: Young male C57B/6 mice were subjected to 90-min transient MCAO and were euthanized at several time points up to 7 days. Transcription of inflammatory cytokines was measured with quantitative real-time PCR, and immune cell activation (e.g., phagocytosis) and migration were assessed with ophthalmoscopy and flow cytometry. RESULTS: Observation of the affected eye revealed symptoms consistent with Horner's syndrome. Light ophthalmoscopy confirmed the reduced blood flow of the retinal arteries during occlusion. CX3CR1-GFP reporter mice were then employed to evaluate the extent of the ocular microglia and monocyte activation. A significant increase in green fluorescent protein (GFP)-positive macrophages was seen throughout the ischemic area compared to the sham and contralateral control eyes. RT-PCR revealed enhanced expression of the monocyte chemotactic molecule CCL2 early after reperfusion followed by a delayed increase in the proinflammatory cytokine TNF-α. Further analysis of peripheral leukocyte recruitment by flow cytometry determined that monocytes and neutrophils were the predominant immune cells to infiltrate at 72 h. A transient reduction in retinal microglia numbers was also observed, demonstrating the ischemic sensitivity of these cells. Blood-eye barrier permeability to small and large tracer molecules was increased by 72 h. Retinal microglia exhibited enhanced phagocytic activity following MCAO; however, infiltrating myeloid cells were significantly more efficient at phagocytizing material at all time points. Immune homeostasis in the affected eye was largely restored by 7 days. CONCLUSIONS: This work demonstrates that there is a robust inflammatory response in the eye following MCAO, which may contribute to a worsening of retinal injury and visual impairment. These results mirror what has been observed in the brain after MCAO, suggesting a conserved inflammatory signaling response to ischemia in the central nervous system. Imaging of the eye may therefore serve as a useful non-invasive prognostic indicator of brain injury after MCAO. Future studies are needed to determine whether this inflammatory response is a potential target for therapeutic manipulation in retinal ischemia.


Asunto(s)
Arteriopatías Oclusivas/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Mediadores de Inflamación/metabolismo , Arteria Oftálmica/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Arteriopatías Oclusivas/genética , Barrera Hematorretinal/fisiología , Permeabilidad Capilar/fisiología , Citocinas/genética , Modelos Animales de Enfermedad , Citometría de Flujo , Infarto de la Arteria Cerebral Media/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Accidente Cerebrovascular/genética
10.
J Neuroinflammation ; 12: 106, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26022493

RESUMEN

BACKGROUND: The brain's initial innate response to stroke is primarily mediated by microglia, the resident macrophage of the CNS. However, as early as 4 h after stroke, the blood-brain barrier is compromised and monocyte infiltration occurs. The lack of discriminating markers between these two myeloid populations has led many studies to generate conclusions based on the grouping of these two populations. A growing body of evidence now supports the distinct roles played by microglia and monocytes in many disease models. METHODS: Using a flow cytometry approach, combined with ex-vivo functional assays, we were able to distinguish microglia from monocytes using the relative expression of CD45 and assess the function of each cell type following stroke over the course of 7 days. RESULTS: We found that at 72 h after a 90-min middle cerebral artery occlusion (MCAO), microglia populations decrease whereas monocytes significantly increase in the stroke brain compared to sham. After stroke, BRDU incorporation into monocytes in the bone marrow increased. After recruitment to the ischemic brain, these monocytes accounted for nearly all BRDU-positive macrophages. Inflammatory activity peaked at 72 h. Microglia produced relatively higher reactive oxygen species and TNF, whereas monocytes were the predominant IL-1ß producer. Although microglia showed enhanced phagocytic activity after stroke, monocytes had significantly higher phagocytic capacity at 72 h. Interestingly, we found a positive correlation between TNF expression levels and phagocytic activity of microglia after stroke. CONCLUSIONS: In summary, the resident microglia population is vulnerable to the effects of severe ischemia, show compromised cell cycle progression, and adopt a largely pro-inflammatory phenotype after stroke. Infiltrating monocytes are primarily involved with early debris clearance of dying cells. These findings suggest that the early wave of infiltrating monocytes may be beneficial to stroke repair and future therapies aimed at mitigating microglia cell death may prove more effective than attempting to elicit targeted anti-inflammatory responses from damaged cells.


Asunto(s)
Microglía/patología , Microglía/fisiología , Monocitos/patología , Monocitos/fisiología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Animales , Barrera Hematoencefálica/fisiología , Movimiento Celular/fisiología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Fagocitosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Pharm Biol ; 53(12): 1850-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25856700

RESUMEN

CONTEXT: Schizophrenia is a chronic disabling psychiatric disorder affecting 1% of the population worldwide. Due to the adverse effects of available antipsychotic medications, recent investigations have focused on the search for well-tolerated, safe molecules from natural resources to control the severity and progression of schizophrenia. OBJECTIVE: To screen the standardized extract of Bacopa monniera Linn. (Scrophulariaceae) (BM) for its antipsychotic potential in the ketamine-induced psychosis model with mice. MATERIALS AND METHODS: Graded dose of BM (40, 80, and 120 mg/kg, p.o.) were given to the mice 1 h prior to ketamine administration and tested for positive symptoms and cognitive deficits. A chronic ketamine treatment regimen was used to study the effect of BM on negative symptoms such as immobility enhancement. Each mouse was used once for the behavioral studies. RESULTS: BM reduced ketamine-induced hyperactivity with an EC50 value of 76.60 mg/kg. The 80 mg/kg dose was used for all other behavior analysis. Pretreatment with BM at 80 mg/kg showed two-fold increases in transfer latency time (TLT) in passive avoidance task. Chronic BM pretreatment (80 mg/kg p.o. daily × 10 d) ameliorated the ketamine-induced enhanced immobility effect by 21% in the forced swim test. BM treatment reversed ketamine-induced increase in monoamine oxidase activity in both cortex and striatum and normalized the acetylcholinesterase activity and the glutamate levels in the hippocampus. DISCUSSION AND CONCLUSION: Overall our findings suggest that BM possesses antipsychotic properties which might be due to its modulatory action on dopamine, serotonin, and glutamate neurotransmission.


Asunto(s)
Antipsicóticos/uso terapéutico , Bacopa , Dopamina/metabolismo , Glutamina/metabolismo , Trastornos Psicóticos/metabolismo , Serotonina/metabolismo , Animales , Antipsicóticos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ketamina/toxicidad , Masculino , Ratones , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Trastornos Psicóticos/tratamiento farmacológico
12.
Stroke ; 45(2): 571-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24357659

RESUMEN

BACKGROUND AND PURPOSE: Aging is an important determinant of ischemic stroke outcomes. Both clinical and experimental stroke studies have shown that aging negatively correlates with infarct volumes but is associated with worsened functional recovery after stroke. This may correspond to a differing cellular and molecular response to stroke in the aged versus young brain. It was hypothesized in this study that the smaller injury seen in the aged ischemic brain is because of structural differences in microvasculature with aging or differences in intraischemic tissue perfusion. METHODS: Both young and aged C57BL6 mice were subject to middle cerebral artery occlusion modeling. Laser speckle flowmetry was used to study the functional dynamics of cerebral perfusion, and fluorescein isothiocyanate (FITC)-dextran staining was performed to examine the structural change in microvasculature. In separate cohorts, cresyl violet staining and immunohistochemistry with CD31 and IgG antibodies were applied to further assess the microvascular density and blood-brain barrier breakdown after stroke. RESULTS: No difference in cerebral blood flow was seen at the baseline, intraischemically, and postreperfusion in young versus aged mice. FITC-dextran and CD31 staining did not show significant differences in the microvascular density between young and aged ischemic brains. More extravasation of IgG through the blood-brain barrier was found in the young versus aged cohort at both 24 and 72 hours after stroke. CONCLUSIONS: Cerebrovascular dynamics and perfusion are not responsible for the different stroke phenotypes seen in the young versus aged animals, which may be more related to different levels of blood-brain barrier breakdown.


Asunto(s)
Envejecimiento/fisiología , Isquemia Encefálica/fisiopatología , Circulación Cerebrovascular/fisiología , Animales , Benzoxazinas , Barrera Hematoencefálica/fisiología , Capilares/patología , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Lateralidad Funcional/fisiología , Inmunoglobulina G/análisis , Inmunohistoquímica , Flujometría por Láser-Doppler , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis
13.
Stroke ; 45(10): 3101-4, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25205311

RESUMEN

BACKGROUND AND PURPOSE: Social isolation (SI) increases stroke incidence and delays poststroke recovery. Women may be at greater risk from the negative consequences of SI, but few studies have examined both sexes in experimental models, and none have evaluated the effects of isolation initiated after stroke. The effects of poststroke SI in men and women were examined, and the role of mitochondrial P53 was evaluated. METHODS: C57Bl6 mice were pair-housed (PH; male and ovariectomized female) for 2 weeks, subjected to stroke and then assigned to a housing condition (isolated or PH). The effects of housing on infarct volume and recovery were examined. Changes in Bcl-2 and mitochondrial p53 were assessed by Western blot. A mitochondrial p53 inhibitor (pifithrin-µ) was given to mice of both sexes. RESULTS: Compared with pair-housed mice, poststroke SI significantly increased infarct size in both sexes; SI mice also had worse neurological deficits. The detrimental effects of SI paralleled increases in mitochondrial p53 levels. Pharmacological inhibition of mitochondrial p53 using pifithrin-µ abolished the detrimental effects of SI and reduced cell death. CONCLUSIONS: Poststroke SI results in increased ischemic injury in both sexes. The effect of housing on infarct was more pronounced in women. Targeting the mitochondrial P53 pathway could minimize the detrimental effects of isolation after stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Aislamiento Social , Proteína p53 Supresora de Tumor/metabolismo , Animales , Western Blotting , Isquemia Encefálica/etiología , Isquemia Encefálica/psicología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Accidente Cerebrovascular/complicaciones
14.
J Am Heart Assoc ; 13(19): e037148, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39344649

RESUMEN

BACKGROUND: Purinergic receptor P2X4 (P2X4R), highly expressed on microglia and macrophages, is activated by ATP released from damaged cells and linked to poststroke inflammation. Previous studies showed that short-term P2X4R inhibition reduces inflammation and promotes long term recovery, but the mechanism underlying P2X4R and inflammation remains unclear. We hypothesized that P2X4R absence or pharmacological blockade can enhance macrophage phagocytic function by alleviating excessive inflammation after stroke. METHODS AND RESULTS: We divided P2X4R knockout and littermate control mice into 2 groups either naive or mice subjected to ischemic stroke surgery. Additionally, the regular WT mice subjected to ischemic stroke were treated with 5-(3-Bromophenyl)-1,3-dihydro-2H-Benzofuro[3,2-e]-1,4-diazepin-2-one BD (a P2X4R inhibitor) or vehicle. We isolated phagocytic cells from mice in each group and assayed phagocytic activity by quantifying uptake of fluorescent beads and bioparticles using flow cytometry or confocal microscopy and by measuring protein expression related to phagocytosis. Short-term inhibition of P2X4R with with 5-(3-Bromophenyl)-1,3-dihydro-2H-Benzofuro[3,2-e]-1,4-diazepin-2-one treatment upregulated ANXA1 (annexinA1). P2X4R absence prevented ATP-induced decline in phagocytic uptake in macrophages. Microglia or macrophages derived from P2X4R knockout mice showed significantly increased phagocytic activity compared with microglia/macrophages taken from littermate control mice. Cell surface expression of CD36, a scavenger receptor protein, increased after stroke, and was higher in P2X4R knockout mice. CONCLUSIONS: This study suggests that blockade or absence of P2X4R increases phagocytic uptake of damaged tissue following ischemic stroke. Taken together with previous reports detailing how P2X4R inhibition is protective following stroke, our results demonstrate P2X4R may mediate long-term resolution after ischemic stroke by enhancing phagocytic clearance.


Asunto(s)
Ratones Noqueados , Fagocitosis , Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X4 , Animales , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Masculino , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/genética , Ratones , Microglía/metabolismo , Microglía/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Benzodiazepinonas
15.
Life Sci ; 354: 122953, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39122110

RESUMEN

Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.


Asunto(s)
Neuroglía , Humanos , Neuroglía/metabolismo , Neuroglía/patología , Animales , Terapia Genética/métodos , Trasplante de Células Madre/métodos
16.
Res Sq ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034723

RESUMEN

Identification of new potential drug target proteins and their plausible mechanisms for stroke treatment is critically needed. We previously showed that genetic deletion and short-term pharmacological inhibition of P2X4R, a purinergic receptor for adenosine triphosphate ATP, provides acute cerebroprotection. However, potential mechanisms remain unknown. Therefore, we employed RNA-seq technology to identify the gene expression profiles, pathway analysis, and qPCR validation of differentially expressed genes (DEGs). This analysis identified roles of DEGs in certain biological processes responsible for P2X4R-dependent cerebroprotection after stroke. We subjected both young and aged male and female global P2X4 KO and littermate WT mice to ischemic stroke. After 3 days, mice were sacrificed, total RNA was isolated using Trizol, and subjected to RNA-seq and Nanostring-mediated qPCR. DESeq2, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) were used to identify mRNA transcript expression profiles and biological pathways. We found 2246 DEGs in P2X4R KO vs WT tissue after stroke. Out of these DEGs, 1920 gene were downregulated, and 325 genes were upregulated in KO. GO/IPA analysis of the top 300 DEGs suggests an enrichment of inflammation and extracellular matrix component genes. qPCR validation of the top 30 DEGs revealed downregulation of two common age-independent genes in P2X4R KO mice: Interleukin-6 ( IL-6) , an inflammatory cytokine, and Cytotoxic T Lymphocyte-Associated Protein 2 alpha ( Ctla2a ), an immunosuppressive factor. These data suggest that P2X4R-mediated cerebroprotection after stroke is initiated by attenuation of immune modulatory pathways in both young and aged mice of both sexes.

17.
Rev Neurosci ; 34(4): 425-442, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36073599

RESUMEN

The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/metabolismo , Neovascularización Fisiológica/fisiología , Neurogénesis/fisiología
18.
Biomater Sci ; 11(24): 7856-7866, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37902365

RESUMEN

Ischemic stroke causes acute CNS injury and long-term disability, with limited treatment options such as surgical clot removal or clot-busting drugs. Neuroprotective therapies are needed to protect vulnerable brain regions. The purinergic receptor P2X4 is activated during stroke and exacerbates post-stroke damage. The chemical compound 5-(3-Bromophenyl)-1,3-dihydro-2H-Benzofuro[3,2-e]-1,4-diazepin-2-one (5BDBD) inhibits P2X4 and has shown neuroprotective effects in rodents. However, it is difficult to formulate for systemic delivery to the CNS. The current manuscript reports for the first time, the synthesis and characterization of 5BDBD PEGylated liposomal formulations and evaluates their feasibility to treat stroke in a preclinical mice model. A PEGylated liposomal formulation of 5BDBD was synthesized and characterized, with encapsulation efficacy of >80%, and release over 48 hours. In vitro and in vivo experiments with Nile red encapsulation showed cytocompatibility and CNS infiltration of nanocarriers. Administered 4 or 28 hours after stroke onset, the nanoformulation provided significant neuroprotection, reducing infarct volume by ∼50% compared to controls. It outperformed orally-administered 5BDBD with a lower dose and shorter treatment duration, suggesting precise delivery by nanoformulation improves outcomes. The fluorescent nanoformulations may serve as a platform for delivering and tracking therapeutic agents for stroke treatment.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Encéfalo , Isquemia Encefálica/tratamiento farmacológico , Liposomas/farmacología , Polietilenglicoles/farmacología
19.
J Vis Exp ; (184)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35815995

RESUMEN

There is no effective treatment available for most patients suffering with ischemic stroke, making development of novel therapeutics imperative. The brain's ability to self-heal after ischemic stroke is limited by inadequate blood supply in the impacted area. Encephalomyosynangiosis (EMS) is a neurosurgical procedure that achieves angiogenesis in patients with moyamoya disease. It involves craniotomy with placement of a vascular temporalis muscle graft on the ischemic brain surface. EMS has never been studied in the setting of acute ischemic stroke in mice. The hypothesis driving this study is that EMS enhances cerebral angiogenesis at the cortical surface surrounding the muscle graft. The protocol shown here describes the procedure and provides initial data supporting the feasibility and efficacy of the EMS approach. In this protocol, after 60 min of transient middle cerebral artery occlusion (MCAo), mice were randomized to either MCAo or MCAo + EMS treatment. The EMS was performed 3-4 h after occlusion. The mice were sacrificed 7 or 21 days after MCAo or MCAo + EMS treatment. Temporalis graft viability was measured using nicotinamide adenine dinucleotide reduced-tetrazolium reductase assay. A mouse angiogenesis array quantified angiogenic and neuromodulating protein expression. Immunohistochemistry was used to visualize graft bonding with brain cortex and change in vessel density. The preliminary data here suggest that grafted muscle remained viable 21 days after EMS. Immunostaining showed successful graft implantation and increase in vessel density near the muscle graft, indicating increased angiogenesis. Data show that EMS increases fibroblast growth factor (FGF) and decreases osteopontin levels after stroke. Additionally, EMS after stroke did not increase mortality suggesting that protocol is safe and reliable. This novel procedure is effective and well-tolerated and has the potential to provide information of novel interventions for enhanced angiogenesis after acute ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Enfermedad de Moyamoya , Accidente Cerebrovascular , Animales , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Ratones , Enfermedad de Moyamoya/cirugía , Neovascularización Patológica
20.
J Med Chem ; 65(20): 13967-13987, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36150180

RESUMEN

We analyzed the P2X4 receptor structure-activity relationship of a known antagonist 5, a 1,5-dihydro-2H-naphtho[1,2-b][1,4]diazepine-2,4(3H)-dione. Following extensive modification of the reported synthetic route, 4-pyridyl 21u (MRS4719) and 6-methyl 22c (MRS4596) analogues were most potent at human (h) P2X4R (IC50 0.503 and 1.38 µM, respectively, and selective versus hP2X1R, hP2X2/3R, hP2X3R). Thus, the naphthalene 6-, but not 7-position was amenable to substitution, and an N-phenyl ring aza-scan identified 21u with 3-fold higher activity than 5. Compounds 21u and 22c showed neuroprotective and learning- and memory-enhancing activities in a mouse middle cerebral artery occlusion (MCAO) model of ischemic stroke, with potency of 21u > 22c. 21u dose-dependently reduced infarct volume and reduced brain atrophy at 3 and 35 days post-stroke, respectively. Relevant to clinical implication, 21u also reduced ATP-induced [Ca2+]i influx in primary human monocyte-derived macrophages. This study indicates the translational potential of P2X4R antagonists for treating ischemic stroke, including in aging populations.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Animales , Ratones , Humanos , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X4 , Modelos Animales de Enfermedad , Relación Estructura-Actividad , Azepinas , Adenosina Trifosfato , Naftalenos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA