Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-22273395

RESUMEN

As SARS-CoV-2 continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses, and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta or Delta variants, we show that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta plus (Delta+) which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+ and Omicron, which all possess the N417 residue. We isolated a N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D mAb utilized the IGHV3-23*01 germline gene and had similar somatic hypermutations compared to previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targetting escape mutations such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. ImportanceThe evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring varying immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants, and to define shared epitopes. We show that Beta and Delta infection resulted in antibody responses that were more cross-reactive compared to the original D614G variant, but each with differing patterns of cross-reactivity. We further isolated an antibody from Beta infection, which targeted the N417 site, enabling cross-neutralization of Beta, Delta+ and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.

2.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21265853

RESUMEN

SARS-CoV-2 variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with decreased disease severity and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta infection triggered responses with significantly improved Fc cross-reactivity against global VOCs compared to either D614G infected or Ad26.COV2.S vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence impacts Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.

3.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-434193

RESUMEN

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

4.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-427166

RESUMEN

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.

5.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-500042

RESUMEN

The SARS-CoV-2 Omicron BA.1 variant, which exhibits high level neutralization resistance, has since evolved into several sub-lineages including BA.4 and BA.5, which have dominated the fifth wave of infection in South Africa. Here we assessed the sensitivity of BA.4 to neutralization and antibody dependent cellular cytotoxicity (ADCC) in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high level resistance to neutralization, regardless of the infecting variant. However, breakthrough infections, which trigger potent neutralization, retained activity against BA.4, albeit at reduced titers. Fold reduction of neutralization in BTIs was lower than that seen in unvaccinated convalescent donors, suggesting maturation of neutralizing responses to become more resilient against VOCs in hybrid immunity. BA.4 sensitivity to ADCC was reduced but remained detectable in both convalescent donors and in BTIs. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infections, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC activity against BA.4 was reduced, residual activity may nonetheless contribute to the protection from disease.

6.
Preprint en Inglés | PREPRINT-BIORXIV | ID: ppbiorxiv-500039

RESUMEN

SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing antibodies with variable cross-neutralizing capacity. Here we show that unlike SARS-CoV-2 Omicron BA.1, which triggered neutralizing antibodies with limited cross-reactivity, BA.4/5 infection triggers highly cross-reactive neutralizing antibodies. Cross-reactivity was observed both in the absence of prior vaccination and also in breakthrough infections following vaccination. This suggests that next-generation vaccines incorporating BA.4, which is spreading globally, might result in enhanced neutralization breadth.

7.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-22270789

RESUMEN

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We use plasma from 20 unvaccinated and seven vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies target Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization is not extensively cross-reactive for VOCs (14 to 31-fold titer reduction) and we observe 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection was associated with improved cross-neutralization of VOCs, with titers exceeding 1:2,100. This has important implications for vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. While Omicron-based immunogens may be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2 naive individuals.

8.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21266049

RESUMEN

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in severely ill, hospitalized donors, and are cross-reactive against diverse SARS-CoV-2 variants, including the extremely neutralization resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.

9.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21268380

RESUMEN

The SARS-CoV-2 Omicron variant has multiple Spike (S) protein mutations that contribute to escape from the neutralizing antibody responses, and reducing vaccine protection from infection. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. We assessed the ability of T cells to react with Omicron spike in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, and in unvaccinated convalescent COVID-19 patients (n = 70). We found that 70-80% of the CD4 and CD8 T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar to that of the Beta and Delta variants, despite Omicron harbouring considerably more mutations. Additionally, in Omicron-infected hospitalized patients (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those found in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). These results demonstrate that despite Omicrons extensive mutations and reduced susceptibility to neutralizing antibodies, the majority of T cell response, induced by vaccination or natural infection, cross-recognises the variant. Well-preserved T cell immunity to Omicron is likely to contribute to protection from severe COVID-19, supporting early clinical observations from South Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA