Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genes Dev ; 36(19-20): 1043-1045, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460465

RESUMEN

The Polycomb system modulates chromatin structure to maintain gene repression during cell differentiation. Polycomb repression involves methylation of histone H3K27 (H3K27me3) by Polycomb repressive complex 2 (PRC2), monoubiquitylation of H2A (H2Aub1) by noncanonical PRC1 (ncPRC1), and chromatin compaction by canonical PRC1 (cPRC1), which is independent of its enzymatic activity. Puzzlingly, Polycomb repression also requires deubiquitylation of H2Aub1 by Polycomb repressive deubiquitinase (PR-DUB). In this issue of Genes & Development, Bonnet and colleagues (pp. 1046-1061) resolve this paradox by showing that high levels of H2Aub1 in Drosophila lacking PR-DUB activity promotes open chromatin and gene expression in spite of normal H3K27me3 levels and PRC binding. Pertinently, gene repression is restored by concomitant loss of PRC1 E3 ubiquitin ligase activity but depends on its chromatin compaction activity. These findings suggest that PR-DUB ensures just-right levels of H2Aub1 to allow chromatin compaction by cPRC1.


Asunto(s)
Proteínas de Drosophila , Histonas , Animales , Proteínas del Grupo Polycomb/genética , Proteínas de Drosophila/genética , Drosophila/genética , Complejo Represivo Polycomb 1/genética , Cromatina
2.
Genes Dev ; 33(15-16): 936-959, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123059

RESUMEN

Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Neoplasias/fisiopatología , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos
3.
Genes Dev ; 30(21): 2345-2369, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881599

RESUMEN

To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease.


Asunto(s)
Núcleo Celular/enzimología , Regulación de la Expresión Génica/genética , Metabolismo/genética , Acetilcoenzima A/biosíntesis , Acetilcoenzima A/metabolismo , Animales , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Histonas/metabolismo , Humanos , NAD/metabolismo , Neoplasias/enzimología , Neoplasias/fisiopatología , Células Madre Pluripotentes/metabolismo
4.
Mol Cell ; 53(3): 458-70, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24462112

RESUMEN

Nucleotide biosynthesis is fundamental to normal cell proliferation as well as to oncogenesis. Tumor suppressor p53, which prevents aberrant cell proliferation, is destabilized through ubiquitylation by MDM2. Ubiquitin-specific protease 7 (USP7) plays a dualistic role in p53 regulation and has been proposed to deubiquitylate either p53 or MDM2. Here, we show that guanosine 5'-monophosphate synthase (GMPS) is required for USP7-mediated stabilization of p53. Normally, most GMPS is sequestered in the cytoplasm, separated from nuclear USP7 and p53. In response to genotoxic stress or nucleotide deprivation, GMPS becomes nuclear and facilitates p53 stabilization by promoting its transfer from MDM2 to a GMPS-USP7 deubiquitylation complex. Intriguingly, cytoplasmic sequestration of GMPS requires ubiquitylation by TRIM21, a ubiquitin ligase associated with autoimmune disease. These results implicate a classic nucleotide biosynthetic enzyme and a ubiquitin ligase, better known for its role in autoimmune disease, in p53 control.


Asunto(s)
Ligasas de Carbono-Nitrógeno/fisiología , Nucleótidos/biosíntesis , Ribonucleoproteínas/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Neoplasias de la Mama/metabolismo , Ligasas de Carbono-Nitrógeno/análisis , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular Tumoral , Células Cultivadas , Daño del ADN , Drosophila/genética , Femenino , Células HEK293 , Humanos , Ribonucleoproteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/fisiología , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación
5.
Mol Cell ; 47(1): 133-9, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22658723

RESUMEN

Cells need to coordinate gene expression and metabolic state. Inosine monophosphate dehydrogenase (IMPDH) controls the guanine nucleotide pool and, thereby, cell proliferation. We found that Drosophila IMPDH is also a DNA-binding transcriptional repressor. IMPDH attenuates expression of histone genes and E2f, a key driver of cell proliferation. Nuclear IMPDH accumulates during the G2 phase of the cell cycle or following replicative or oxidative stress. Thus, IMPDH can couple the expression of histones and E2F to cellular state. Genome-wide profiling and in vitro binding assays established that IMPDH binds sequence specifically to single-stranded, CT-rich DNA elements. Surprisingly, this DNA-binding function is conserved in E. coli IMPDH. The catalytic function of IMPDH is not required for DNA binding. Yet substitutions that correspond to human retinitis pigmentosa mutations disrupt IMPDH binding to CT-rich, single-stranded DNA elements. By doubling as nucleotide biosynthetic enzyme or transcription factor, IMPDH can either enable or restrict cell proliferation.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/genética , IMP Deshidrogenasa/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Inmunoprecipitación de Cromatina , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Fase G2/genética , Perfilación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , IMP Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Retinitis Pigmentosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
6.
Genes Dev ; 26(23): 2604-20, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23166019

RESUMEN

Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Estudio de Asociación del Genoma Completo , N-Metiltransferasa de Histona-Lisina/genética , Metilación
7.
Mol Cell ; 35(6): 782-93, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19782028

RESUMEN

Histone chaperones are involved in a variety of chromatin transactions. By a proteomics survey, we identified the interaction networks of histone chaperones ASF1, CAF1, HIRA, and NAP1. Here, we analyzed the cooperation of H3/H4 chaperone ASF1 and H2A/H2B chaperone NAP1 with two closely related silencing complexes: LAF and RLAF. NAP1 binds RPD3 and LID-associated factors (RLAF) comprising histone deacetylase RPD3, histone H3K4 demethylase LID/KDM5, SIN3A, PF1, EMSY, and MRG15. ASF1 binds LAF, a similar complex lacking RPD3. ASF1 and NAP1 link, respectively, LAF and RLAF to the DNA-binding Su(H)/Hairless complex, which targets the E(spl) NOTCH-regulated genes. ASF1 facilitates gene-selective removal of the H3K4me3 mark by LAF but has no effect on H3 deacetylation. NAP1 directs high nucleosome density near E(spl) control elements and mediates both H3 deacetylation and H3K4me3 demethylation by RLAF. We conclude that histone chaperones ASF1 and NAP1 differentially modulate local chromatin structure during gene-selective silencing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Silenciador del Gen , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metilación , Chaperonas Moleculares/genética , Complejos Multiproteicos , Proteínas Nucleares/genética , Proteína 1 de Ensamblaje de Nucleosomas , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteómica/métodos , Receptores Notch/genética , Proteínas Represoras/genética , Transcripción Genética
8.
PLoS Genet ; 9(9): e1003719, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086141

RESUMEN

Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genoma de los Insectos , Mitosis/genética , Proteínas Nucleares/genética , Proteína 1 de Ensamblaje de Nucleosomas/genética , Unión Proteica , Proteína Fosfatasa 2/genética , Cohesinas
9.
Commun Biol ; 6(1): 1144, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949928

RESUMEN

Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA). Strikingly, ~42% of organisms contain only PRC1 or PRC2, showing that their evolution since LECA is largely uncoupled. The identification of ncPRC1-defining subunits in unicellular relatives of animals and fungi suggests ncPRC1 originated before cPRC1, and we propose a scenario for the evolution of cPRC1 from ncPRC1. Together, our results suggest that crosstalk between these complexes is a secondary development in evolution.


Asunto(s)
Histonas , Complejo Represivo Polycomb 1 , Animales , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Ubiquitinación
10.
Cell Death Dis ; 14(5): 337, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217493

RESUMEN

Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas Supresoras de Tumor , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Proteínas Supresoras de Tumor/genética
11.
Dev Cell ; 13(4): 593-600, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17925233

RESUMEN

The histone chaperone Asf1 assists in chromatin assembly and remodeling during replication, transcription activation, and gene silencing. However, it has been unclear to what extent Asf1 could be targeted to specific loci via interactions with sequence-specific DNA-binding proteins. Here, we show that Asf1 contributes to the repression of Notch target genes, as depletion of Asf1 in cells by RNAi causes derepression of the E(spl) Notch-inducible genes. Conversely, overexpression of Asf1 in vivo results in decreased expression of target genes and produces phenotypes that are strongly modified (enhanced and suppressed) by mutations affecting the Notch pathway, but not by mutations in other signaling pathways. Asf1 can be coprecipitated with the DNA-binding protein Su(H) and the corepressor Hairless and interacts directly with two components of this complex, Hairless and SKIP. Thus, in addition to playing more general roles in chromatin dynamics, Asf1 is directed via interactions with sequence-specific complexes to mediate silencing of specific target genes.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Silenciador del Gen , Animales , Proteínas de Ciclo Celular/genética , Ojo Compuesto de los Artrópodos/anomalías , Ojo Compuesto de los Artrópodos/metabolismo , Ojo Compuesto de los Artrópodos/fisiología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/anomalías , Alas de Animales/metabolismo , Alas de Animales/fisiología
12.
Sci Adv ; 8(44): eabq7598, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36332031

RESUMEN

Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.

13.
Mol Cell Proteomics ; 8(7): 1566-78, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19321433

RESUMEN

An important hallmark in embryonic development is characterized by the maternal-to-zygotic transition (MZT) where zygotic transcription is activated by a maternally controlled environment. Post-transcriptional and translational regulation is critical for this transition and has been investigated in considerable detail at the gene level. We used a proteomics approach using metabolic labeling of Drosophila to quantitatively assess changes in protein expression levels before and after the MZT. By combining stable isotope labeling of fruit flies in vivo with high accuracy quantitative mass spectrometry we could quantify 2,232 proteins of which about half changed in abundance during this process. We show that approximately 500 proteins increased in abundance, providing direct evidence of the identity of proteins as a product of embryonic translation. The group of down-regulated proteins is dominated by maternal factors involved in translational control of maternal and zygotic transcripts. Surprisingly a direct comparison of transcript and protein levels showed that the mRNA levels of down-regulated proteins remained relatively constant, indicating a translational control mechanism specifically targeting these proteins. In addition, we found evidence for post-translational processing of cysteine proteinase-1 (Cathepsin L), which became activated during the MZT as evidenced by the loss of its N-terminal propeptide. Poly(A)-binding protein was shown to be processed at its C-terminal tail, thereby losing one of its protein-interacting domains. Altogether this quantitative proteomics study provides a dynamic profile of known and novel proteins of maternal as well as embryonic origin. This provides insight into the production, stability, and modification of individual proteins, whereas discrepancies between transcriptional profiles and protein dynamics indicate novel control mechanisms in genome activation during early fly development.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Isótopos/metabolismo , Coloración y Etiquetado/métodos , Secuencia de Aminoácidos , Animales , Cromatografía Liquida/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/citología , Oocitos/fisiología , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Activación Transcripcional
14.
Elife ; 102021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34313222

RESUMEN

ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Drosophila melanogaster/genética , Histonas/metabolismo , Hidrólisis , Nucleosomas/metabolismo
15.
Mol Cell Biol ; 27(2): 651-61, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17101803

RESUMEN

Drosophila BAP and PBAP represent two evolutionarily conserved subclasses of SWI/SNF chromatin remodelers. The two complexes share the same core subunits, including the BRM ATPase, but differ in a few signature subunits: OSA defines BAP, whereas Polybromo (PB) and BAP170 specify PBAP. Here, we present a comprehensive structure-function analysis of BAP and PBAP. An RNA interference knockdown survey revealed that the core subunits BRM and MOR are critical for the structural integrity of both complexes. Whole-genome expression profiling suggested that the SWI/SNF core complex is largely dysfunctional in cells. Regulation of the majority of target genes required the signature subunit OSA, PB, or BAP170, suggesting that SWI/SNF remodelers function mostly as holoenzymes. BAP and PBAP execute similar, independent, or antagonistic functions in transcription control and appear to direct mostly distinct biological processes. BAP, but not PBAP, is required for cell cycle progression through mitosis. Because in yeast the PBAP-homologous complex, RSC, controls cell cycle progression, our finding reveals a functional switch during evolution. BAP mediates G(2)/M transition through direct regulation of string/cdc25. Its signature subunit, OSA, is required for directing BAP to the string/cdc25 promoter. Our results suggest that the core subunits play architectural and enzymatic roles but that the signature subunits determine most of the functional specificity of SWI/SNF holoenzymes in general gene control.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transactivadores/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Holoenzimas/genética , Holoenzimas/metabolismo , Mitosis/fisiología , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Transactivadores/genética , Transcripción Genética
16.
Mol Cell Biol ; 22(7): 1961-70, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11884585

RESUMEN

Histone acetyltransferases (HATs) such as CBP and p300 are regarded as key regulators of RNA polymerase II-mediated transcription, but the critical structural features of their HAT modules remain ill defined. The HAT domains of CBP and p300 are characterized by the presence of a highly conserved putative plant homeodomain (PHD) (C4HC3) type zinc finger, which is part of the functionally uncharacterized cysteine-histidine-rich region 2 (CH2). Here we show that this region conforms to the PHD type zinc finger consensus and that it is essential for in vitro acetylation of core histones and the basal transcription factor TFIIE34 as well as for CBP autoacetylation. PHD finger mutations also reduced the transcriptional activity of the full-length CBP protein when tested on transfected reporter genes. Importantly, similar results were obtained on integrated reporters, which reflect a more natural chromatinized state. Taken together, our results indicate that the PHD finger forms an integral part of the enzymatic core of the HAT domain of CBP.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transactivadores/química , Transactivadores/metabolismo , Dedos de Zinc , Acetilación , Acetiltransferasas/genética , Secuencia de Aminoácidos , Animales , Proteína de Unión a CREB , Línea Celular , Secuencia Conservada , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Drosophila , Histona Acetiltransferasas , Histonas/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transactivadores/genética , Transcripción Genética , Dedos de Zinc/genética
17.
Mol Cell Biol ; 22(21): 7473-83, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12370294

RESUMEN

Polycomb group (PcG) proteins function through cis-acting DNA elements called PcG response elements (PREs) to stably silence developmental regulators, including the homeotic genes. However, the mechanism by which they are targeted to PREs remains largely unclear. Pleiohomeotic (PHO) is a sequence-specific DNA-binding PcG protein and therefore may function to tether other PcG proteins to the DNA. Here, we show that PHO can directly bind to a Polycomb (PC)-containing complex as well as the Brahma (BRM) chromatin-remodeling complex. PHO contacts the BRM complex through its zinc finger DNA-binding domain and a short N-terminal region. A distinct domain of PHO containing a conserved motif contacts the PcG proteins PC and Polyhomeotic (PH). With mobility shift assays and DNA pulldown experiments, we demonstrated that PHO is able to link PC, which lacks sequence-specific DNA-binding activity, to the DNA. Importantly, we found that the PC-binding domain of PHO can mediate transcriptional repression in transfected Drosophila Schneider cells. Concomitant overexpression of PC resulted in stronger PHO-directed repression that was dependent on its PC-binding domain. Together, these results suggest that PHO can contribute to PRE-mediated silencing by direct recruitment of a PC complex to repress transcription.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/fisiología , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Animales , Western Blotting , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Drosophila , Silenciador del Gen , Glutatión Transferasa/metabolismo , Insectos , Modelos Biológicos , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Factores de Transcripción , Transfección
18.
Mol Cell Biol ; 24(8): 3077-88, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15060132

RESUMEN

The SWI/SNF family of ATP-dependent chromatin-remodeling factors plays a central role in eukaryotic transcriptional regulation. In yeast and human cells, two subclasses have been recognized: one comprises yeast SWI/SNF and human BAF, and the other includes yeast RSC and human PBAF. Therefore, it was puzzling that Drosophila appeared to contain only a single SWI/SNF-type remodeler, the Brahma (BRM) complex. Here, we report the identification of two novel BRM complex-associated proteins: Drosophila Polybromo and BAP170, a conserved protein not described previously. Biochemical analysis established that Drosophila contains two distinct BRM complexes: (i) the BAP complex, defined by the presence of OSA and the absence of Polybromo and BAP170, and (ii) the PBAP complex, containing Polybromo and BAP170 but lacking OSA. Determination of the genome-wide distributions of OSA and Polybromo on larval salivary gland polytene chromosomes revealed that BAP and PBAP display overlapping but distinct distribution patterns. Both complexes associate predominantly with regions of open, hyperacetylated chromatin but are largely excluded from Polycomb-bound repressive chromatin. We conclude that, like yeast and human cells, Drosophila cells express two distinct subclasses of the SWI/SNF family. Our results support a close reciprocity of chromatin regulation by ATP-dependent remodelers and histone-modifying enzymes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Sustancias Macromoleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Transactivadores/genética , Factores de Transcripción/genética
19.
Nat Biotechnol ; 21(8): 927-31, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12858183

RESUMEN

A crucial issue in comparative proteomics is the accurate quantification of differences in protein expression levels. To achieve this, several methods have been developed in which proteins are labeled with stable isotopes either in vivo via metabolic labeling or in vitro by protein derivatization. Although metabolic labeling is the only way to obtain labeling of all proteins, it has thus far only been applied to single- celled organisms and cells in culture. Here we describe quantitative 15N metabolic labeling of the multicellular organisms Caenorhabditis elegans, a nematode, and Drosophila melanogaster, the common fruit fly, achieved by feeding them on 15N-labeled Escherichia coli and yeast, respectively. The relative abundance of individual proteins obtained from different samples can then be determined by mass spectrometry (MS). The applicability of the method is exemplified by the comparison of protein expression levels in two C. elegans strains, one with and one without a germ line. The methodology described provides tools for accurate quantitative proteomic studies in these model organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/fisiología , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Isótopos de Nitrógeno , Proteoma/metabolismo , Proteómica/métodos , Animales , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Drosophila/análisis , Proteoma/análisis , Especificidad de la Especie
20.
Nucleic Acids Res ; 33(12): 3743-50, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16002789

RESUMEN

Enhancers are DNA sequences that can activate gene transcription from remote positions. In yeast, regulatory sequences that are functionally equivalent to the metazoan enhancers are called upstream activating sequences (UASs). UASs show a lower degree of flexibility than their metazoan counterparts, but can nevertheless activate transcription from a distance of >1000 bp from the promoter. One of several models for the mechanism of action of transcriptional enhancers proposes that enhancer-bound activating proteins contact promoter-bound transcription factors and thereby get in close proximity to the promoter region with concomitant looping of the intervening DNA. We tested the mode of enhancer activity in yeast. A polymerase II-transcribed gene was paired with a remote, inducible enhancer. An independent reporter system was inserted next to the promoter to monitor the potential modes of enhancer activity. Our results show that the enhancer activated the reporter system only in the presence of a functional promoter. We also demonstrate that the heterologous expression of GAGA, a factor known to facilitate DNA loop formation, allows enhancer action in yeast over a distance of 3000 bp.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/química , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Genes Reporteros , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA