Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mutat ; 43(12): 1872-1881, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36317459

RESUMEN

ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.


Asunto(s)
Seudoxantoma Elástico , Humanos , Mutación , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Seudoxantoma Elástico/patología , Penetrancia , Adenosina Trifosfato , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
2.
Genet Med ; 23(1): 131-139, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873932

RESUMEN

PURPOSE: Pseudoxanthoma elasticum (PXE) is a heritable disorder affecting elastic fibers in the skin, eyes, and cardiovascular system. It is caused by biallelic pathogenic variants in the ABCC6 gene. To date, over 300 ABCC6 variants are associated with PXE, more than half being missense variants. Correct variant interpretation is essential for establishing a direct link between the variant and the patient's phenotype and has important implications for diagnosis and treatment. METHODS: We used a systematic approach for interpretation of 271 previously reported and 15 novel ABCC6 missense variants, based on the semiquantitative classification system Sherloc. RESULTS: Only 35% of variants were very likely to contribute directly to disease, in contrast to reported interpretations in ClinVar, while 59% of variants are currently of uncertain significance (VUS). Subclasses were created to distinguish VUS that are leaning toward likely benign or pathogenic, increasing the number of (likely) pathogenic ABCC6 missense variants to 47%. CONCLUSION: Besides highlighting discrepancies between the Sherloc, American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP), ClinVar, and Leiden Open Variation Database (LOVD) classification, our results emphasize the need for segregation analysis, functional assays, and detailed evidence sharing in variant databases to reach a confident interpretation of ABCC6 missense variants and subsequent appropriate genetic and preconceptual counseling.


Asunto(s)
Seudoxantoma Elástico , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Mutación Missense , Fenotipo , Seudoxantoma Elástico/diagnóstico , Seudoxantoma Elástico/genética
3.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052252

RESUMEN

Ectopic mineralization disorders comprise a broad spectrum of inherited or acquired diseases characterized by aberrant deposition of calcium crystals in multiple organs, such as the skin, eyes, kidneys, and blood vessels. Although the precise mechanisms leading to ectopic calcification are still incompletely known to date, various molecular targets leading to a disturbed balance between pro- and anti-mineralizing pathways have been identified in recent years. Vitamin K and its related compounds, mainly those post-translationally activated by vitamin K-dependent carboxylation, may play an important role in the pathogenesis of ectopic mineralization as has been demonstrated in studies on rare Mendelian diseases, but also on highly prevalent disorders, like vascular calcification. This narrative review compiles and summarizes the current knowledge regarding the role of vitamin K, its metabolism, and associated compounds in the pathophysiology of both monogenic ectopic mineralization disorders, like pseudoxanthoma elasticum or Keutel syndrome, as well as acquired multifactorial diseases, like chronic kidney disease. Clinical and molecular aspects of the various disorders are discussed according to the state-of-the-art, followed by a comprehensive literature review regarding the role of vitamin K in molecular pathophysiology and as a therapeutic target in both human and animal models of ectopic mineralization disorders.


Asunto(s)
Calcinosis/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Vitamina K/metabolismo , Anomalías Múltiples , Animales , Calcinosis/genética , Enfermedades de los Cartílagos , Enfermedades Genéticas Congénitas/genética , Deformidades Congénitas de la Mano , Humanos , Estenosis de la Válvula Pulmonar , Vitamina K/genética
4.
J Clin Med ; 12(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902680

RESUMEN

Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.

5.
Orphanet J Rare Dis ; 17(1): 185, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525997

RESUMEN

BACKGROUND: Pseudoxanthoma elasticum (PXE, OMIM# 264800) is an inborn error of metabolism causing ectopic soft tissue calcification due to low plasma pyrophosphate concentration. We aimed to assess the prevalence of PXE in Finland and to characterize the Finnish PXE population. A nationwide registry search was performed to identify patients with ICD-10 code Q82.84. Information was gathered from available medical records which were requisitioned from hospitals and health centers. Misdiagnosed patients and patients with insufficient records were excluded. RESULTS: The prevalence of PXE in Finland was 1:260,000 with equal sex distribution. Patients with high conventional cardiovascular risk had more visual and vascular complications than patients with low risk. Four patients (19%) had at least one vascular malformation. A high proportion (33%) of ABCC6 genotypes were of the common homozygous c.3421C > T, p.Arg1141Ter variant. Nine other homozygous or compound heterozygous allelic variants were found. CONCLUSIONS: The prevalence of diagnosed PXE appears to be lower in Finland than in estimates from other countries. Decreased visual acuity is the most prevalent complication. We suggest that various vascular malformations may be an unrecognized feature of PXE.


Asunto(s)
Seudoxantoma Elástico , Malformaciones Vasculares , Finlandia/epidemiología , Genotipo , Humanos , Seudoxantoma Elástico/epidemiología , Sistema de Registros , Malformaciones Vasculares/epidemiología
6.
J Genet Genomics ; 48(4): 289-299, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34049798

RESUMEN

Pseudogenes are frequently encountered noncoding sequences with a high sequence similarity to their protein-coding paralogue. For this reason, their presence is often considered troublesome in molecular diagnostics. In pseudoxanthoma elasticum (PXE), a disease predominantly caused by mutations in ATP-binding cassette family C member 6 (ABCC6), the presence of two pseudogenes complicates the analysis of sequence data. With whole-exome sequencing (WES) becoming the standard of care in molecular diagnostics, we wanted to evaluate whether this technique is as reliable as gene-specific targeted enrichment analysis for the analysis of ABCC6. We established a PCR-based targeted enrichment and next-generation sequencing testing approach and demonstrated that the ABCC6-specific enrichment combined with the applied mapping algorithm overcomes the complication of ABCC6 pseudogene aspecificities, contrary to WES. We propose a time- and cost-efficient diagnostic strategy for comprehensive and accurate molecular genetic testing of PXE, which is highly automatable.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Patología Molecular , Seudogenes/genética , Seudoxantoma Elástico/genética , Alelos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/sangre , Mutación/genética , Linaje , Seudoxantoma Elástico/sangre , Seudoxantoma Elástico/patología , Secuenciación del Exoma
7.
Atherosclerosis ; 324: 18-26, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812167

RESUMEN

BACKGROUND AND AIMS: Pseudoxanthoma elasticum (PXE) is caused by variants in the ABCC6 gene. It results in calcification in the skin, peripheral arteries and the eyes, but has considerable phenotypic variability. We investigated the association between the ABCC6 genotype and calcification and clinical phenotypes in these different organs. METHODS: ABCC6 sequencing was performed in 289 PXE patients. Genotypes were grouped as two truncating, mixed, or two non-truncating variants. Arterial calcification mass was quantified on whole body, low dose CT scans; and peripheral arterial disease was measured with the ankle brachial index after treadmill test. The presence of pseudoxanthoma in the skin was systematically scored. Ophthalmological phenotypes were the length of angioid streaks as a measure of Bruchs membrane calcification, the presence of choroidal neovascularizations, severity of macular atrophy and visual acuity. Regression models were built to test the age and sex adjusted genotype-phenotype association. RESULTS: 158 patients (median age 51 years) had two truncating variants, 96 (median age 54 years) a mixed genotype, 18 (median age 47 years) had two non-truncating variants. The mixed genotype was associated with lower peripheral (ß: 0.39, 95%CI:-0.62;-0.17) and total (ß: 0.28, 95%CI:-0.47;-0.10) arterial calcification mass scores, and lower prevalence of choroidal neovascularizations (OR: 0.41 95%CI:0.20; 0.83) compared to two truncating variants. No association with pseudoxanthomas was found. CONCLUSIONS: PXE patients with a mixed genotype have less severe arterial and ophthalmological phenotypes than patients with two truncating variants in the ABCC6 gene. Research into environmental and genetic modifiers might provide further insights into the unexplained phenotypic variability.


Asunto(s)
Enfermedad Arterial Periférica , Seudoxantoma Elástico , Estudios de Asociación Genética , Genotipo , Humanos , Persona de Mediana Edad , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/genética , Fenotipo , Seudoxantoma Elástico/diagnóstico , Seudoxantoma Elástico/genética
8.
FEBS Lett ; 594(23): 4109-4133, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131056

RESUMEN

ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Trastornos Cerebrovasculares/metabolismo , Ensayos Clínicos como Asunto , Evolución Molecular , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Neoplasias/metabolismo , Seudoxantoma Elástico/metabolismo , Calcificación Vascular/metabolismo
9.
Nat Commun ; 10(1): 3182, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320637

RESUMEN

DNA methylation contributes to the maintenance of genomic integrity in somatic cells, in part through the silencing of transposable elements. In this study, we use CRISPR-Cas9 technology to delete DNMT1, the DNA methyltransferase key for DNA methylation maintenance, in human neural progenitor cells (hNPCs). We observe that inactivation of DNMT1 in hNPCs results in viable, proliferating cells despite a global loss of DNA CpG-methylation. DNA demethylation leads to specific transcriptional activation and chromatin remodeling of evolutionarily young, hominoid-specific LINE-1 elements (L1s), while older L1s and other classes of transposable elements remain silent. The activated L1s act as alternative promoters for many protein-coding genes involved in neuronal functions, revealing a hominoid-specific L1-based transcriptional network controlled by DNA methylation that influences neuronal protein-coding genes. Our results provide mechanistic insight into the role of DNA methylation in silencing transposable elements in somatic human cells, as well as further implicating L1s in human brain development and disease.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Desmetilación del ADN , Metilación de ADN/genética , Elementos de Nucleótido Esparcido Largo/genética , Células-Madre Neurales/citología , Encéfalo/embriología , Sistemas CRISPR-Cas/genética , Ensamble y Desensamble de Cromatina/genética , Islas de CpG/genética , Silenciador del Gen/fisiología , Humanos , Células-Madre Neurales/metabolismo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA