Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(7): 2052-2063, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796703

RESUMEN

Gene transfer therapies utilizing adeno-associated virus (AAV) vectors involve a complex drug design with multiple components that may impact immunogenicity. Valoctocogene roxaparvovec is an AAV serotype 5 (AAV5)-vectored gene therapy for the treatment of hemophilia A that encodes a B-domain-deleted human factor VIII (FVIII) protein controlled by a hepatocyte-selective promoter. Following previous results from the first-in-human phase 1/2 clinical trial, we assessed AAV5-capsid- and transgene-derived FVIII-specific immune responses with 2 years of follow-up data from GENEr8-1, a phase 3, single-arm, open-label study in 134 adult men with severe hemophilia A. No FVIII inhibitors were detected following administration of valoctocogene roxaparvovec. Immune responses were predominantly directed toward the AAV5 capsid, with all participants developing durable anti-AAV5 antibodies. Cellular immune responses specific for the AAV5 capsid were detected in most participants by interferon-γ enzyme-linked immunosorbent spot assay 2 weeks following dose administration and declined or reverted to negative over the first 52 weeks. These responses were weakly correlated with alanine aminotransferase elevations and showed no association with changes in FVIII activity. FVIII-specific cellular immune responses were less frequent and more sporadic compared with those specific for AAV5 and showed no association with safety or efficacy parameters.


Asunto(s)
Dependovirus , Factor VIII , Terapia Genética , Vectores Genéticos , Hemofilia A , Humanos , Hemofilia A/terapia , Hemofilia A/inmunología , Hemofilia A/genética , Dependovirus/genética , Dependovirus/inmunología , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Factor VIII/genética , Factor VIII/inmunología , Masculino , Adulto , Resultado del Tratamiento , Transgenes , Adulto Joven , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Persona de Mediana Edad
2.
Haemophilia ; 30(2): 320-330, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38317480

RESUMEN

INTRODUCTION: Valoctocogene roxaparvovec uses an adeno-associated virus serotype 5 (AAV5) vector to transfer a factor VIII (FVIII) coding sequence to individuals with severe haemophilia A, providing bleeding protection. AIM: To assess safety and efficacy of valoctocogene roxaparvovec 5-6 years post-treatment. METHODS: In a phase 1/2 trial, adult male participants with severe haemophilia A (FVIII ≤1 IU/dL) without FVIII inhibitors or anti-AAV5 antibodies received valoctocogene roxaparvovec and were followed for 6 (6 × 1013 vg/kg; n = 7) and 5 (4 × 1013 vg/kg; n = 6) years. Safety, including investigation of potential associations between a malignancy and gene therapy, and efficacy are reported. RESULTS: No new treatment-related safety signals emerged. During year 6, a participant in the 6 × 1013  vg/kg cohort was diagnosed with grade 2 parotid gland acinar cell carcinoma; definitive treatment was uncomplicated parotidectomy with lymph node dissection. Target enrichment sequencing of tumour and adjacent healthy tissue revealed low vector integration (8.25 × 10-5 per diploid cell). Integrations were not elevated in tumour samples, no insertions appeared to drive tumorigenesis, and no clonal expansion of integration-containing cells occurred. During all follow-ups, >90% decreases from baseline in annualised treated bleeds and FVIII infusion rates were maintained. At the end of years 6 and 5, mean FVIII activity (chromogenic assay) was 9.8 IU/dL (median, 5.6 IU/dL) and 7.6 IU/dL (median, 7.1 IU/dL) for the 6 × 1013 and 4 × 1013 vg/kg cohorts, respectively, representing proportionally smaller year-over-year declines than earlier timepoints. CONCLUSIONS: Valoctocogene roxaparvovec safety and efficacy profiles remain largely unchanged; genomic investigations showed no association with a parotid tumour.


Asunto(s)
Dependovirus , Hemofilia A , Hemostáticos , Neoplasias , Proteínas Recombinantes de Fusión , Adulto , Humanos , Masculino , Hemofilia A/complicaciones , Factor VIII/genética , Hemorragia/prevención & control , Neoplasias/complicaciones
3.
Gene Ther ; 30(7-8): 581-586, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132205

RESUMEN

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype five gene therapy under investigation for the treatment of hemophilia A. Herein, we assessed the potential for germline transmission of AAV5-hFVIII-SQ in mice. Male B6.129S6-Rag2tm1Fwa N12 mice received a single intravenous dose of vehicle or 6 × 1013 vg/kg AAV5-hFVIII-SQ. Vehicle and AAV5-hFVIII-SQ-treated mice were mated with naïve females 4 days after dosing, when the concentration of vector genomes was expected to be at its peak in semen, and 37 days after dosing, when a full spermatogenesis cycle was estimated to be complete. Quantitative PCR was used to evaluate the presence of transgene DNA in liver and testes from F0 males dosed with AAV5-hFVIII-SQ and liver tissue of F1 offspring. Transgene DNA was detected in liver and testes of all F0 males dosed with AAV5-hFVIII-SQ, confirming successful transduction. Importantly, no transgene DNA was detected in any tested F1 offspring derived from F0 males dosed with AAV5-hFVIII-SQ. Using a novel 2-stage statistical model that takes into account the number of males dosed with AAV5-hFVIII-SQ and the number of offspring sired by these males, we estimate that the risk of germline transmission is <5% with a 99.2% confidence level.


Asunto(s)
Factor VIII , Vectores Genéticos , Masculino , Animales , Ratones , Factor VIII/genética , Vectores Genéticos/genética , Terapia Genética , Administración Intravenosa , Dependovirus/genética
4.
Gene Ther ; 29(1-2): 41-54, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432123

RESUMEN

Adeno-Associated Virus (AAV)-based gene therapy vectors are in development for many inherited human disorders. In nonclinical studies, cellular immune responses mediated by cytotoxic T cells may target vector-transduced cells, which could impact safety and efficacy. Here, we describe the bioanalytical validation of an interferon-gamma (IFN-γ)-based Enzyme-Linked Immunospot (ELISpot) assay for measuring T cell responses against viral antigens in cynomolgus monkeys. Since ELISpots performed with antigen-derived peptides offer a universal assay format, method performance characteristics were validated using widely available peripheral blood mononuclear cells (PBMCs) responsive to cytomegalovirus peptides. The limit of detection and confirmatory cut point were established using statistical methods; precision, specificity, and linearity were confirmed. Monkey PBMCs from an AAV5 gene therapy study were then analyzed, using peptide pools spanning the vector capsid and transgene product. AAV5-specific T cell responses were detected only in 2 of 18 monkeys at Day 28, but not at Day 13 and 56 after vector administration, with no correlation to liver enzyme elevations or transgene expression levels. No transgene product-specific T cell responses occurred. In conclusion, while viral peptide-specific IFN-γ ELISpots can be successfully validated for monkey PBMCs, monitoring peripheral T cell responses in non-clinical AAV5 gene therapy studies was of limited value to interpret safety or efficacy.


Asunto(s)
Antígenos Virales , Interferón gamma , Animales , Antígenos Virales/genética , Ensayo de Immunospot Ligado a Enzimas/métodos , Inmunidad Celular , Interferón gamma/metabolismo , Leucocitos Mononucleares/metabolismo , Primates
5.
Gene Ther ; 29(1-2): 94-105, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34421119

RESUMEN

Adeno-associated virus (AAV)-based gene therapy vectors are replication-incompetent and thus pose minimal risk for horizontal transmission or release into the environment. In studies with AAV5-FVIII-SQ (valoctocogene roxaparvovec), an investigational gene therapy for hemophilia A, residual vector DNA was detectable in blood, secreta, and excreta, but it remained unclear how long structurally intact AAV5 vector capsids were present. Since a comprehensive assessment of vector shedding is required by regulatory agencies, we developed a new method (termed iqPCR) that utilizes capsid-directed immunocapture followed by qPCR amplification of encapsidated DNA. The limit of detection for AAV5 vector capsids was 1.17E+04 and 2.33E+04 vg/mL in plasma and semen, respectively. Acceptable precision, accuracy, selectivity, and specificity were verified; up to 1.00E+09 vg/mL non-encapsidated vector DNA showed no interference. Anti-AAV5 antibody plasma concentrations above 141 ng/mL decreased AAV5 capsid quantification, suggesting that iqPCR mainly detects free capsids and not those complexed with antibodies. In a clinical study, AAV5-FVIII-SQ capsids were found in plasma and semen but became undetectable within nine weeks after dose administration. Hence, iqPCR monitors the presence and shedding kinetics of intact vector capsids following AAV gene therapy and informs the potential risk for horizontal transmission.


Asunto(s)
Factor VIII , Hemofilia A , Cápside , Proteínas de la Cápside/genética , Dependovirus/genética , Factor VIII/genética , Factor VIII/uso terapéutico , Terapia Genética/métodos , Vectores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos
6.
Blood ; 136(22): 2524-2534, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32915950

RESUMEN

Adeno-associated virus (AAV)-based gene therapies can restore endogenous factor VIII (FVIII) expression in hemophilia A (HA). AAV vectors typically use a B-domain-deleted FVIII transgene, such as human FVIII-SQ in valoctocogene roxaparvovec (AAV5-FVIII-SQ). Surprisingly, the activity of transgene-produced FVIII-SQ was between 1.3 and 2.0 times higher in one-stage clot (OS) assays than in chromogenic-substrate (CS) assays, whereas recombinant FVIII-SQ products had lower OS than CS activity. Transgene-produced and recombinant FVIII-SQ showed comparable specific activity (international units per milligram) in the CS assay, demonstrating that the diverging activities arise in the OS assay. Higher OS activity for transgene-produced FVIII-SQ was observed across various assay kits and clinical laboratories, suggesting that intrinsic molecular features are potential root causes. Further experiments in 2 participants showed that transgene-produced FVIII-SQ accelerated early factor Xa and thrombin formation, which may explain the higher OS activity based on a kinetic bias between OS and CS assay readout times. Despite the faster onset of coagulation, global thrombin levels were unaffected. A correlation with joint bleeds suggested that both OS and CS assay remained clinically meaningful to distinguish hemophilic from nonhemophilic FVIII activity levels. During clinical development, the CS activity was chosen as a surrogate end point to conservatively assess hemostatic efficacy and enable comparison with recombinant FVIII-SQ products. Relevant trials are registered on clinicaltrials.gov as #NCT02576795 and #NCT03370913 and, respectively, on EudraCT (European Union Drug Regulating Authorities Clinical Trials Database; https://eudract.ema.europa.eu) as #2014-003880-38 and #2017-003215-19.


Asunto(s)
Factor VIII , Terapia Genética , Hemofilia A , Parvovirinae , Transgenes , Dependovirus , Factor VIII/genética , Factor VIII/metabolismo , Hemofilia A/sangre , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Masculino
7.
Mol Ther ; 29(2): 597-610, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309883

RESUMEN

Evaluation of immune responses to adeno-associated virus (AAV)-mediated gene therapies prior to and following dose administration plays a key role in determining therapeutic safety and efficacy. This report describes up to 3 years of immunogenicity data following administration of valoctocogene roxaparvovec (BMN 270), an AAV5-mediated gene therapy encoding human B domain-deleted FVIII (hFVIII-SQ) in a phase 1/2 clinical study of adult males with severe hemophilia A. Patients with pre-existing humoral immunity to AAV5 or with a history of FVIII inhibitors were excluded from the trial. Blood plasma and peripheral blood mononuclear cell (PBMC) samples were collected at regular intervals following dose administration for assessment of humoral and cellular immune responses to both the AAV5 vector and transgene-expressed hFVIII-SQ. The predominant immune response elicited by BMN 270 administration was largely limited to the development of antibodies against the AAV5 capsid that were cross-reactive with other common AAV serotypes. No FVIII inhibitor responses were observed within 3 years following dose administration. In a context of prophylactic or on-demand corticosteroid immunosuppression given after vector infusion, AAV5 and hFVIII-SQ peptide-specific cellular immune responses were intermittently detected by an interferon (IFN)-γ and tumor necrosis factor (TNF)-α FluoroSpot assay, but they were not clearly associated with detrimental safety events or changes in efficacy measures.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Adulto , Reacciones Cruzadas/inmunología , Dependovirus/inmunología , Factor VIII/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Humoral , Masculino , Transgenes , Resultado del Tratamiento
8.
N Engl J Med ; 377(26): 2519-2530, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29224506

RESUMEN

BACKGROUND: Patients with hemophilia A rely on exogenous factor VIII to prevent bleeding in joints, soft tissue, and the central nervous system. Although successful gene transfer has been reported in patients with hemophilia B, the large size of the factor VIII coding region has precluded improved outcomes with gene therapy in patients with hemophilia A. METHODS: We infused a single intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a B-domain-deleted human factor VIII (AAV5-hFVIII-SQ) in nine men with severe hemophilia A. Participants were enrolled sequentially into one of three dose cohorts (low dose [one participant], intermediate dose [one participant], and high dose [seven participants]) and were followed through 52 weeks. RESULTS: Factor VIII activity levels remained at 3 IU or less per deciliter in the recipients of the low or intermediate dose. In the high-dose cohort, the factor VIII activity level was more than 5 IU per deciliter between weeks 2 and 9 after gene transfer in all seven participants, and the level in six participants increased to a normal value (>50 IU per deciliter) that was maintained at 1 year after receipt of the dose. In the high-dose cohort, the median annualized bleeding rate among participants who had previously received prophylactic therapy decreased from 16 events before the study to 1 event after gene transfer, and factor VIII use for participant-reported bleeding ceased in all the participants in this cohort by week 22. The primary adverse event was an elevation in the serum alanine aminotransferase level to 1.5 times the upper limit of the normal range or less. Progression of preexisting chronic arthropathy in one participant was the only serious adverse event. No neutralizing antibodies to factor VIII were detected. CONCLUSIONS: The infusion of AAV5-hFVIII-SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with stabilization of hemostasis and a profound reduction in factor VIII use in all seven participants. In this small study, no safety events were noted, but no safety conclusions can be drawn. (Funded by BioMarin Pharmaceutical; ClinicalTrials.gov number, NCT02576795 ; EudraCT number, 2014-003880-38 .).


Asunto(s)
Dependovirus , Factor VIII/genética , Terapia Genética , Vectores Genéticos , Hemofilia A/terapia , Adulto , Anticuerpos Antivirales/sangre , ADN Viral , Dependovirus/inmunología , Factor VIII/administración & dosificación , Factor VIII/metabolismo , Terapia Genética/efectos adversos , Terapia Genética/métodos , Hemofilia A/genética , Hemofilia A/inmunología , Hemofilia A/metabolismo , Hemorragia/prevención & control , Humanos , Infusiones Intravenosas , Masculino , Esparcimiento de Virus , Adulto Joven
9.
Nature ; 477(7365): 424-30, 2011 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-21909113

RESUMEN

Immunoglobulin heavy chain (IgH) variable region exons are assembled from V(H), D and J(H) gene segments in developing B lymphocytes. Within the 2.7-megabase mouse Igh locus, V(D)J recombination is regulated to ensure specific and diverse antibody repertoires. Here we report in mice a key Igh V(D)J recombination regulatory region, termed intergenic control region 1 (IGCR1), which lies between the V(H) and D clusters. Functionally, IGCR1 uses CTCF looping/insulator factor-binding elements and, correspondingly, mediates Igh loops containing distant enhancers. IGCR1 promotes normal B-cell development and balances antibody repertoires by inhibiting transcription and rearrangement of D(H)-proximal V(H) gene segments and promoting rearrangement of distal V(H) segments. IGCR1 maintains ordered and lineage-specific V(H)(D)J(H) recombination by suppressing V(H) joining to D segments not joined to J(H) segments, and V(H) to DJ(H) joins in thymocytes, respectively. IGCR1 is also required for feedback regulation and allelic exclusion of proximal V(H)-to-DJ(H) recombination. Our studies elucidate a long-sought Igh V(D)J recombination control region and indicate a new role for the generally expressed CTCF protein.


Asunto(s)
ADN Intergénico/genética , Reordenamiento Génico de Cadena Pesada de Linfocito B/genética , Recombinación Genética/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Represoras/metabolismo , Exones VDJ/genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Factor de Unión a CCCTC , Linaje de la Célula/genética , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Retroalimentación Fisiológica , Células Germinativas/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Ratones , Mutación/genética , Timo/citología , Transcripción Genética/genética
10.
Mol Cell ; 34(6): 639-40, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19560416

RESUMEN

In a recent issue of Molecular Cell, Shimazaki et al. (2009) show that an interaction between RAG2 and a methylated histone might play a critical regulatory role in V(D)J recombination by enhancing DNA binding and enzymatic activity of the V(D)J recombinase.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Modelos Genéticos , Recombinación Genética , Animales , Sitios de Unión , Roturas del ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Secuencias Invertidas Repetidas , Metilación , Ratones , Especificidad por Sustrato , VDJ Recombinasas/metabolismo
11.
Eur J Immunol ; 45(3): 695-704, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25501566

RESUMEN

In general, a long-lasting immune response to viruses is achieved when they are infectious and replication competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive because A3 directly controls viremia before the onset of adaptive antiviral immune responses. It suggests that A3 also affects the antibody response directly. Here, we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes and compared it to WT and mouse A3-deficient mice. A3 enzymes decreased the number of marginal zone B cells, but not the number of follicular B or T cells. When mouse A3 was knocked out, the retroelement hitchhiker-1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by marginal zone B cells with little affinity maturation, to a more sustained germinal center B-cell response, which drives affinity maturation and, thereby, a better neutralizing response.


Asunto(s)
Formación de Anticuerpos , Linfocitos B/inmunología , Citidina Desaminasa/inmunología , Citosina Desaminasa/inmunología , Centro Germinal/inmunología , Desaminasas APOBEC , Animales , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Virosis/genética , Virosis/inmunología , Virosis/patología
12.
Proc Natl Acad Sci U S A ; 108(23): 9566-71, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606361

RESUMEN

Compaction and looping of the ~2.5-Mb Igh locus during V(D)J rearrangement is essential to allow all V(H) genes to be brought in proximity with D(H)-J(H) segments to create a diverse antibody repertoire, but the proteins directly responsible for this are unknown. Because CCCTC-binding factor (CTCF) has been demonstrated to be involved in long-range chromosomal interactions, we hypothesized that CTCF may promote the contraction of the Igh locus. ChIP sequencing was performed on pro-B cells, revealing colocalization of CTCF and Rad21 binding at ~60 sites throughout the V(H) region and 2 other sites within the Igh locus. These numerous CTCF/cohesin sites potentially form the bases of the multiloop rosette structures at the Igh locus that compact during Ig heavy chain rearrangement. To test whether CTCF was involved in locus compaction, we used 3D-FISH to measure compaction in pro-B cells transduced with CTCF shRNA retroviruses. Reduction of CTCF binding resulted in a decrease in Igh locus compaction. Long-range interactions within the Igh locus were measured with the chromosomal conformation capture assay, revealing direct interactions between CTCF sites 5' of DFL16 and the 3' regulatory region, and also the intronic enhancer (Eµ), creating a D(H)-J(H)-Eµ-C(H) domain. Knockdown of CTCF also resulted in the increase of antisense transcription throughout the D(H) region and parts of the V(H) locus, suggesting a widespread regulatory role for CTCF. Together, our findings demonstrate that CTCF plays an important role in the 3D structure of the Igh locus and in the regulation of antisense germline transcription and that it contributes to the compaction of the Igh locus.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cadenas Pesadas de Inmunoglobulina/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión/genética , Western Blotting , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Línea Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , ADN sin Sentido/genética , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos/genética , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Interferencia de ARN , ARN sin Sentido/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Cohesinas
13.
Immunol Rev ; 237(1): 22-42, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20727027

RESUMEN

The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.


Asunto(s)
Alelos , Linfocitos B/inmunología , Genes de Inmunoglobulinas , Modelos Inmunológicos , Animales , Humanos , Cadenas gamma de Inmunoglobulina/inmunología , Cadenas lambda de Inmunoglobulina/inmunología
14.
Blood Adv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024543

RESUMEN

Following systemically-administered adeno-associated virus (AAV) gene therapy, vector particles are widely distributed, which has raised concerns about horizontal or germline transmission of vector. Characterization of biodistribution and kinetics of vector DNA in body fluids can address these concerns and provide insights into vector behavior in accessible samples. We investigated the biodistribution and vector shedding profile of valoctocogene roxaparvovec in men with severe hemophilia A enrolled in the phase 3 GENEr8-1 trial. Participants (n=134) received a single 6E13 vg/kg infusion and were assessed over 3 years. Vector DNA was measured with 4 different assays. Total vector DNA was evaluated in blood, saliva, stool, semen, and urine by quantitative (q)PCR. Encapsidated vector DNA was measured in plasma and semen with immunocapture-based qPCR. Contiguity of vector genomes and assembly of inverted terminal repeat fusions were measured in whole blood and peripheral blood mononuclear cells (PBMCs) using multi-color digital PCR. Median peak vector DNA levels observed 1 to 8 days after dosing were highest in blood, followed by saliva, semen, stool, and urine. Concentrations then declined steadily. Encapsidated vector DNA cleared faster than total vector DNA, achieving clearance by <=12 weeks in plasma and semen. Predominant vector genome forms transitioned from non-contiguous to full-length over time in whole blood and PBMCs, indicating formulation of stable circularized episomes within nucleated cells. The replication-incompetent nature of valoctocogene roxaparvovec, coupled with the steady clearance of total and encapsidated vector DNA from shedding matrices, indicates risk of transmission is low. This trial is registered at www.clinicaltrials.gov as NCT03370913.

15.
Trends Immunol ; 31(5): 176-83, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20356792

RESUMEN

The first step in establishing the antibody repertoire in humans and mice is the rearrangement of immunoglobulin heavy chain (HC) genes in early B lineage cells. These cells then assemble microHCs with surrogate light chains (SLC) into a pre-B cell receptor (pre-BCR). We propose that the pre-BCR has evolved from an ancient autoreactive BCR, since the SLC is an autoreactive entity that binds to the pre-BCR itself and to other self-antigens. Abrogation of autoreactivity in the SLC diminishes pre-BCR signaling and impairs the clonal expansion of pre-B cells producing functional microHCs. Since SLC expression is restricted to pre-B cells, the autoreactivity encoded by the pre-BCR can be utilized to pre-select the antibody repertoire, while simultaneously avoiding the formation of autoreactive B lymphocytes.


Asunto(s)
Autoinmunidad , Receptores de Células Precursoras de Linfocitos B/inmunología , Animales , Autoantígenos/inmunología , Linfocitos B/inmunología , Humanos , Receptores de Células Precursoras de Linfocitos B/metabolismo , Receptor Cross-Talk , Transducción de Señal
16.
AAPS J ; 25(3): 47, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101079

RESUMEN

The number of approved or investigational late phase viral vector gene therapies (GTx) has been rapidly growing. The adeno-associated virus vector (AAV) technology continues to be the most used GTx platform of choice. The presence of pre-existing anti-AAV immunity has been firmly established and is broadly viewed as a potential deterrent for successful AAV transduction with a possibility of negative impact on clinical efficacy and a connection to adverse events. Recommendations for the evaluation of humoral, including neutralizing and total antibody based, anti-AAV immune response have been presented elsewhere. This manuscript aims to cover considerations related to the assessment of anti-AAV cellular immune response, including review of correlations between humoral and cellular responses, potential value of cellular immunogenicity assessment, and commonly used analytical methodologies and parameters critical for monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development who represent several pharma and contract research organizations. It is our intent to provide recommendations and guidance to the industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV cellular immune response assessment.


Asunto(s)
Dependovirus , Terapia Genética , Dependovirus/genética , Terapia Genética/métodos , Inmunidad Celular , Vectores Genéticos
17.
Mol Ther Methods Clin Dev ; 24: 222-229, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35141351

RESUMEN

Successful treatment with adeno-associated virus (AAV)-based gene therapies can be limited by pre-existing anti-AAV antibodies. Cell-based transduction inhibition (TI) assays are useful to characterize the neutralizing potential of anti-AAV antibodies in patient samples. While these assays are commonly used, they are not specific for neutralizing antibodies (NAbs) against AAV, also detecting non-antibody-based factors that inhibit AAV transduction in vitro but may not substantially decrease efficacy in vivo. This paper describes the development and bioanalytical validation of a confirmatory assay to improve the specificity of detecting anti-AAV5 NAbs in cell-based TI assays. Samples that screen positive for transduction inhibitors are subsequently depleted of all classes of immunoglobulins using agarose resins conjugated with protein A, G, and L (AGL), which restores AAV5 transduction for NAb-containing samples. Unconjugated agarose resin serves as a mock control for non-specific depletion effects and facilitates normalization of the transduction efficiencies between an AGL- and mock-treated sample; the normalized value is termed the AGL/mock ratio. During validation, a confirmatory cut point for the AGL/mock ratio was derived; sensitivity, precision, selectivity, and matrix interference were also assessed. This confirmatory TI assay facilitates a characterization of humoral immunity to AAV gene therapy by reliably distinguishing NAbs from non-antibody-based neutralizing factors.

18.
Mol Ther Methods Clin Dev ; 26: 519-531, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36092364

RESUMEN

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.

19.
Proteomics ; 11(7): 1228-37, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21319304

RESUMEN

The final step of B-cell maturation is to differentiate into plasma cells, a process that is accompanied by gross changes in subcellular organization to enable antibody secretion. To better understand this critical step in mounting a humoral immune response, we analyzed proteome dynamics during plasma cell differentiation with combined 2-DE/MS. Thirty-two identified protein spots changed in relative abundance when lipopolysaccharide (LPS)-stimulated primary B cells differentiated into antibody-secreting plasma cells. A correlative analysis of protein and transcript abundance suggested that one third of these proteins are post-transcriptionally regulated. Apart from ER-resident chaperones, lipid metabolic enzymes, and translation initiation factors, we identified several proteins that had not been previously studied in plasma cells. Among them is the transiently upregulated proteasome activator (PA) 28γ, a component of the putative nuclear proteasome. Additionally, we discovered that the non-canonical inflammatory cytokine high-mobility group box 1 (HMG1) was released from plasma cells into the extracellular milieu. This suggests a novel role for plasma cells as pro-inflammatory mediators, which has important implications for various autoimmune diseases and chronic inflammation.


Asunto(s)
Autoantígenos/inmunología , Proteína HMGB1/inmunología , Células Plasmáticas/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Proteoma/genética , Proteoma/inmunología , ARN Mensajero/biosíntesis , Animales , Formación de Anticuerpos/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Cultivadas , Electroforesis en Gel Bidimensional , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/inmunología , Factores Eucarióticos de Iniciación/metabolismo , Perfilación de la Expresión Génica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inmunidad Humoral/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/inmunología , Lipopolisacáridos/farmacología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Chaperonas Moleculares/metabolismo , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , ARN Mensajero/análisis
20.
Mol Ther Methods Clin Dev ; 22: 183-195, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485604

RESUMEN

Adeno-associated virus (AAV)-based gene therapies have recently shown promise as a novel treatment for hereditary diseases. Due to the viral origin of the vector capsid, however, cellular immune response may be elicited that could eliminate transduced target cells. To monitor cellular immune responses in clinical trials, we optimized and bioanalytically validated a sensitive, robust, and reliable interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assay. For method performance validation, human peripheral blood mononuclear cells (PBMCs) were stimulated with peptides derived from AAV5 capsid proteins and the encoded transgene product, human blood clotting factor VIII (FVIII), in addition to positive controls, such as peptides from the 65-kDa phosphoprotein of cytomegalovirus. We statistically assessed the limit of detection and confirmatory cutpoint, evaluated precision and linearity, and confirmed specificity using HIV peptides. Robustness parameter ranges and sample stability periods were established. The validated IFN-γ ELISpot assay was then implemented in an AAV5-FVIII gene therapy clinical trial. Cellular immune responses against the AAV5 capsid were observed in most participants as soon as 2 weeks following dose administration; only limited responses against the transgene product were detected. These data underscore the value of using validated methods for monitoring cellular immunity in AAV gene therapy trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA