Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 61(6): 821-33, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26907613

RESUMEN

Spatial restriction of mRNA to distinct subcellular locations enables local regulation and synthesis of proteins. However, the organizing principles of mRNA localization remain poorly understood. Here we analyzed subcellular transcriptomes of neural projections and soma of primary mouse cortical neurons and two neuronal cell lines and found that alternative last exons (ALEs) often confer isoform-specific localization. Surprisingly, gene-distal ALE isoforms were four times more often localized to neurites than gene-proximal isoforms. Localized isoforms were induced during neuronal differentiation and enriched for motifs associated with muscleblind-like (Mbnl) family RNA-binding proteins. Depletion of Mbnl1 and/or Mbnl2 reduced localization of hundreds of transcripts, implicating Mbnls in localization of mRNAs to neurites. We provide evidence supporting a model in which the linkage between genomic position of ALEs and subcellular localization enables coordinated induction of localization-competent mRNA isoforms through a post-transcriptional regulatory program that is induced during differentiation and reversed in cellular reprogramming and cancer.


Asunto(s)
Proteínas de Unión al ADN/genética , Neuritas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Diferenciación Celular/genética , Reprogramación Celular/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Exones , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Isoformas de Proteínas , Estructura Terciaria de Proteína , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Transcriptoma/genética
2.
Development ; 142(24): 4318-28, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26525675

RESUMEN

The olfactory system provides mammals with the abilities to investigate, communicate and interact with their environment. These functions are achieved through a finely organized circuit starting from the nasal cavity, passing through the olfactory bulb and ending in various cortical areas. We show that the absence of transient axonal glycoprotein-1 (Tag1)/contactin-2 (Cntn2) in mice results in a significant and selective defect in the number of the main projection neurons in the olfactory bulb, namely the mitral cells. A subpopulation of these projection neurons is reduced in Tag1-deficient mice as a result of impaired migration. We demonstrate that the detected alterations in the number of mitral cells are well correlated with diminished odor discrimination ability and social long-term memory formation. Reduced neuronal activation in the olfactory bulb and the corresponding olfactory cortex suggest that Tag1 is crucial for the olfactory circuit formation in mice. Our results underpin the significance of a numerical defect in the mitral cell layer in the processing and integration of odorant information and subsequently in animal behavior.


Asunto(s)
Movimiento Celular , Contactina 2/deficiencia , Bulbo Olfatorio/patología , Bulbo Olfatorio/fisiopatología , Animales , Recuento de Células , Contactina 2/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/patología
3.
Cereb Cortex ; 25(9): 2370-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24626607

RESUMEN

Cortical interneurons are characterized by extraordinary functional and morphological diversity. Although tremendous progress has been made in uncovering molecular and cellular mechanisms implicated in interneuron generation and function, several questions still remain open. Rho-GTPases have been implicated as intracellular mediators of numerous developmental processes such as cytoskeleton organization, vesicle trafficking, transcription, cell cycle progression, and apoptosis. Specifically in cortical interneurons, we have recently shown a cell-autonomous and stage-specific requirement for Rac1 activity within proliferating interneuron precursors. Conditional ablation of Rac1 in the medial ganglionic eminence leads to a 50% reduction of GABAergic interneurons in the postnatal cortex. Here we examine the additional role of Rac3 by analyzing Rac1/Rac3 double-mutant mice. We show that in the absence of both Rac proteins, the embryonic migration of medial ganglionic eminence-derived interneurons is further impaired. Postnatally, double-mutant mice display a dramatic loss of cortical interneurons. In addition, Rac1/Rac3-deficient interneurons show gross cytoskeletal defects in vitro, with the length of their leading processes significantly reduced and a clear multipolar morphology. We propose that in the absence of Rac1/Rac3, cortical interneurons fail to migrate tangentially towards the pallium due to defects in actin and microtubule cytoskeletal dynamics.


Asunto(s)
Axones/fisiología , Corteza Cerebral/citología , Interneuronas/citología , Microtúbulos/fisiología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Animales Recién Nacidos , Axones/ultraestructura , Ciclo Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Interneuronas/ultraestructura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Eminencia Media/citología , Ratones , Ratones Transgénicos , Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Paclitaxel/farmacología , Embarazo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Moduladores de Tubulina/farmacología , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/genética
4.
Cereb Cortex ; 22(3): 680-92, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21690261

RESUMEN

Cortical γ-aminobutyric acid (GABA)ergic interneurons are characterized by extraordinary neurochemical and functional diversity. Although recent studies have uncovered some of the molecular components underlying interneuron development, including the cellular and molecular mechanisms guiding their migration to the cortex, the intracellular components involved are still unknown. Rac1, a member of the Rac subfamily of Rho-GTPases, has been implicated in various cellular processes such as cell cycle dynamics, axonogenesis, and migration. In this study, we have addressed the specific role of Rac1 in interneuron progenitors originating in the medial ganglionic eminence, via Cre/loxP technology. We show that ablation of Rac1 from Nkx2.1-positive progenitors, results in a migratory impairment. As a consequence, only half of GABAergic interneurons are found in the postnatal cortex. The rest remain aggregated in the ventral telencephalon and show morphological defects in their growing processes in vitro. Ablation of Rac1 from postmitotic progenitors does not result in similar defects, thus underlying a novel cell autonomous and stage-specific requirement for Rac1 activity, within proliferating progenitors of cortical interneurons. Rac1 is necessary for their transition from G1 to S phase, at least in part by regulating cyclin D levels and retinoblastoma protein phosphorylation.


Asunto(s)
Puntos de Control del Ciclo Celular , Movimiento Celular , Corteza Cerebral/fisiología , Interneuronas/fisiología , Eminencia Media/fisiología , Células-Madre Neurales/fisiología , Neuropéptidos/fisiología , Proteínas de Unión al GTP rac/fisiología , Animales , Puntos de Control del Ciclo Celular/genética , Movimiento Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/patología , Femenino , Fase G1/genética , Interneuronas/citología , Interneuronas/patología , Eminencia Media/citología , Eminencia Media/patología , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Neuropéptidos/deficiencia , Neuropéptidos/genética , Embarazo , Cultivo Primario de Células , Proteínas de Unión al GTP rac/deficiencia , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1
5.
Front Mol Neurosci ; 15: 949096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979146

RESUMEN

Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.

6.
Front Cell Neurosci ; 13: 454, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749685

RESUMEN

Corticothalamic axons express Contactin-2 (CNTN2/TAG-1), a neuronal recognition molecule of the immunoglobulin superfamily involved in neurogenesis, neurite outgrowth, and fasciculation. TAG-1, which is expressed transiently by cortical pyramidal neurons during embryonic development, has been shown to be fundamental for axonal recognition, cellular migration, and neuronal proliferation in the developing cortex. Although Tag-1 -/- mice do not exhibit any obvious defects in the corticofugal system, the role of TAG-1+ neurons during the development of the cortex remains elusive. We have generated a mouse model expressing EGFP under the Tag-1 promoter and encompassing the coding sequence of Diptheria Toxin subunit A (DTA) under quiescence with no effect on the expression of endogenous Tag-1. We show that while the line recapitulates the expression pattern of the molecule, it highlights an extended expression in the forebrain, including multiple axonal tracts and neuronal populations, both spatially and temporally. Crossing these mice to the Emx1-Cre strain, we ablated the vast majority of TAG-1+ cortical neurons. Among the observed defects were a significantly smaller cortex, a reduction of corticothalamic axons as well as callosal and commissural defects. Such defects are common in neurodevelopmental disorders, thus this mouse could serve as a useful model to study physiological and pathophysiological cortical development.

7.
Neurosci Lett ; 432(2): 117-20, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18215465

RESUMEN

The expression of the collapse response mediator protein CRMP5 in the prenatal mouse is largely unknown. Evidence suggests that CRMP family members play important roles in neurite outgrowth, and CRMP5 is known to modulate outgrowth of processes in oligodendrocytes through signalling via neuropilin-1 and SemaA. Furthermore, CRMP family members function in axon regeneration after injury and are implicated in the early stages of Alzheimer's disease. Despite these findings relatively little is known about the specific roles these proteins play. The aim of the present study was to evaluate CRMP5 expression in the developing mouse forebrain using in situ hybridisation. Serial coronal sections of brain from E12.5 to E18.5 were analysed. We found highly specific patterns of expression which were restricted to the post-mitotic layers of both the ganglionic eminence and neocortex, and an additional domain of strong expression in the pyramidal layers of the hippocampus in all prenatal ages. Our results are therefore consistent with a role for CRMP5 in process extension. Interestingly, our results also revealed a temporal switch in high-expression levels from the ganglionic eminence to the cortex at a critical time during tangential cell migration. However, the pattern of expression appeared more representative of a general permissiveness for neurite outgrowth rather than one which is restricted to a particular cell subset or cell class. Additionally, expression was also found during periods predominated by neurogenesis and not neurite extension. We conclude that expression of CRMP5 is consistent with a dynamic implicit role in forebrain development.


Asunto(s)
Amidohidrolasas/genética , Diferenciación Celular/fisiología , Neuronas/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Células Madre/metabolismo , Animales , Movimiento Celular/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Cuerpo Estriado/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Hidrolasas , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Neuronas/citología , Prosencéfalo/citología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Células Madre/citología
8.
Neuron ; 95(3): 608-622.e5, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28735747

RESUMEN

During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation.


Asunto(s)
Actinas/metabolismo , Axones/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , ARN Mensajero/metabolismo , Animales , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica/fisiología , Biosíntesis de Proteínas
9.
J Cell Biol ; 213(2): 261-74, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27091449

RESUMEN

Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.


Asunto(s)
Axones/metabolismo , Glicoproteínas/fisiología , Proteínas del Tejido Nervioso/fisiología , Seudópodos/fisiología , Receptores Inmunológicos/fisiología , Animales , Axones/ultraestructura , Quimiotaxis , Desarrollo Embrionario , Glicoproteínas/metabolismo , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/metabolismo , Seudópodos/ultraestructura , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Proteínas Roundabout
10.
Neuron ; 83(2): 372-387, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25033181

RESUMEN

A dominant feature of neural circuitry is the organization of neuronal projections and synapses into specific brain nuclei or laminae. Lamina-specific connectivity is controlled by the selective expression of extracellular guidance and adhesion molecules in the target field. However, how (sub)nucleus-specific connections are established and whether axon-derived cues contribute to subdomain targeting are largely unknown. Here, we demonstrate that the lateral subnucleus of the habenula (lHb) determines its own afferent innervation by sending out efferent projections that express the cell adhesion molecule LAMP to reciprocally collect and guide dopaminergic afferents to the lHb-a phenomenon we term subdomain-mediated axon-axon signaling. This process of reciprocal axon-axon interactions cooperates with lHb-specific chemoattraction mediated by Netrin-1, which controls axon target entry, to ensure specific innervation of the lHb. We propose that cooperation between pretarget reciprocal axon-axon signaling and subdomain-restricted instructive cues provides a highly precise and general mechanism to establish subdomain-specific neural circuitry.


Asunto(s)
Axones/metabolismo , Quimiotaxis/fisiología , Habénula/fisiología , Proteínas de Membrana de los Lisosomas/metabolismo , Neuronas Aferentes/fisiología , Animales , Factores Quimiotácticos/metabolismo , Neuronas Dopaminérgicas/fisiología , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Netrina-1 , Vías Nerviosas/fisiología , Sinapsis/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
11.
Nat Cell Biol ; 13(8): 989-95, 2011 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-21785421

RESUMEN

During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia, and then migrate to their proper position within the cortex. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Células Piramidales/fisiología , Factor de Respuesta Sérica/fisiología , Animales , Secuencia de Bases , Movimiento Celular/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Ratones , Modelos Neurológicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Embarazo , ARN Interferente Pequeño/genética
12.
Biotechnol J ; 3(12): 1564-80, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19072911

RESUMEN

Neuronal cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in the formation of neural circuits at different levels: cell migration, axonal and dendritic targeting as well as synapse formation. Furthermore, in perinatal and adult life, neuronal IgCAMs are required for the formation and maintenance of specialized axonal membrane domains, synaptic plasticity and neurogenesis. Mutations in the corresponding human genes have been correlated to several human neuronal disorders. Perturbing neuronal IgCAMs in animal models provides powerful means to understand the molecular and cellular basis of such human disorders. In this review, we concentrate on the NCAM, L1 and contactin subfamilies of neuronal IgCAMs summarizing recent functional studies from model systems and highlighting their links to disease pathogenesis.


Asunto(s)
Encefalopatías/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulinas/metabolismo , Transducción de Señal , Animales , Humanos , Ratones , Ratas , Estadística como Asunto
13.
Dev Biol ; 288(1): 87-99, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16225856

RESUMEN

The neural cell adhesion molecule TAG-1 has been implicated in the tangential migration of neurons of the caudal medulla and of cortical interneurons. In the former case, protein is expressed by the neurons as they migrate, and blocking its function results in altered and reduced migration in vitro. In the latter case, protein is expressed, in part, by the pathway the interneurons use to reach the cortex, and in vitro experiments propose a role for TAG-1 in this system, as well. However, the in vivo requirement of TAG-1 in these migrations has not been investigated. In this report, we analyze the developmental phenotype of TAG-1-deficient animals in these two migratory systems. We show that mutant mice have smaller lateral reticular nuclei as a result of increased cell death in the superficial migratory stream of the caudal medulla. On the other hand, the absence of TAG-1 does not affect the number, morphology, timing and routes of GABAergic interneurons that migrate from the ganglionic eminences to the cortex. Therefore, TAG-1 function is required for the survival of the neurons of some precerebellar nuclei, while it is not required for cortical interneuron migration in vivo.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Movimiento Celular/fisiología , Interneuronas/citología , Bulbo Raquídeo/citología , Animales , Axones/fisiología , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/embriología , Corteza Cerebelosa/fisiología , Contactina 2 , Interneuronas/fisiología , Bulbo Raquídeo/embriología , Ratones , Ratones Noqueados , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA