RESUMEN
The synthesis and coordination chemistry of a new class of silyl pincer ligand featuring pyrrole-based linkers is reported. The steric and electronic properties of these bis(phosphinopyrrole)methylsilane ligands were interrogated using their palladium, rhodium, and platinum complexes. The pyrrole-based linker attenuates the donor ability of the ligand relative to its reported 1,2-phenylene congener while maintaining a similar steric profile. Additionally, the silyl donor connected to the N-pyrrolyl groups exhibits a weaker trans influence than the analogous ligand featuring 1,2-phenylene linkers.
RESUMEN
We report the facile and modular synthesis of unsymmetrical 1,2-bis(phosphino)pyrrole ligands and their coordination chemistry. These ligands offer a promising alternative to their 1,2-bis(phosphino)benzene congeners, retaining a similar steric profile with attenuated electron donation. Proof-of-principle application of a bis(phosphino)pyrrole ligand in a nickel-catalyzed C-N cross-coupling reaction under mild conditions is demonstrated.