RESUMEN
BACKGROUND: Myosin heavy chain 7 (MYH7)-related myopathies (MYH7-RMs) are a group of muscle disorders linked to pathogenic variants in the MYH7 gene, encoding the slow/beta-cardiac myosin heavy chain, which is highly expressed in skeletal muscle and heart. The phenotype is heterogeneous including distal, predominantly axial or scapuloperoneal myopathies with variable cardiac involvement. METHODS: We retrospectively analysed the clinical, muscle MRI, genetic and myopathological features of 57 MYH7 patients. Patients received a thorough neurological (n=57, 100%), cardiac (n=51, 89%) and respiratory (n=45, 79%) assessment. Muscle imaging findings and muscle biopsies were reappraised in 19 (33%) and 27 (47%) patients, respectively. RESULTS: We identified three phenotypes with varying degrees of overlap: distal myopathy (70%), scapuloperoneal (23%) and axial with peculiar cervical spine rigidity called the 'sphinx' phenotype (7%). 14% of patients had either dilated cardiomyopathy, hypertrophic cardiomyopathy or left ventricular non-compaction cardiomyopathy. 31% of patients had prominent respiratory involvement, including all patients with the 'sphinx' phenotype. Muscle MRI showed involvement of tibialis anterior, followed by quadriceps, and erector spinae in patients with axial phenotype. Cores represented the most common myopathological lesion. We report 26 pathogenic variants of MYH7 gene, 9 of which are novel. CONCLUSIONS: MYH7-RMs have a large phenotypic spectrum, including distal, scapuloperoneal or axial weakness, and variable cardiac and respiratory involvement. Tibialis anterior is constantly and precociously affected both clinically and on muscle imaging. Cores represent the most common myopathological lesion. Our detailed description of MYH7-RMs should improve their recognition and management.
RESUMEN
BACKGROUND: Valosin-containing protein (VCP) disease, caused by mutations in the VCP gene, results in myopathy, Paget's disease of bone (PBD) and frontotemporal dementia (FTD). Natural history and genotype-phenotype correlation data are limited. This study characterises patients with mutations in VCP gene and investigates genotype-phenotype correlations. METHODS: Descriptive retrospective international study collecting clinical and genetic data of patients with mutations in the VCP gene. RESULTS: Two hundred and fifty-five patients (70.0% males) were included in the study. Mean age was 56.8±9.6 years and mean age of onset 45.6±9.3 years. Mean diagnostic delay was 7.7±6 years. Symmetric lower limb weakness was reported in 50% at onset progressing to generalised muscle weakness. Other common symptoms were ventilatory insufficiency 40.3%, PDB 28.2%, dysautonomia 21.4% and FTD 14.3%. Fifty-seven genetic variants were identified, 18 of these no previously reported. c.464G>A (p.Arg155His) was the most frequent variant, identified in the 28%. Full time wheelchair users accounted for 19.1% with a median time from disease onset to been wheelchair user of 8.5 years. Variant c.463C>T (p.Arg155Cys) showed an earlier onset (37.8±7.6 year) and a higher frequency of axial and upper limb weakness, scapular winging and cognitive impairment. Forced vital capacity (FVC) below 50% was as risk factor for being full-time wheelchair user, while FVC <70% and being a full-time wheelchair user were associated with death. CONCLUSION: This study expands the knowledge on the phenotypic presentation, natural history, genotype-phenotype correlations and risk factors for disease progression of VCP disease and is useful to improve the care provided to patient with this complex disease.
RESUMEN
BACKGROUND AND PURPOSE: Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS: A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS: Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION: Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.
Asunto(s)
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Diagnóstico Tardío , Humanos , Mutación/genética , Mialgia , Parálisis , Estudios RetrospectivosRESUMEN
Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype-phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.
Asunto(s)
Proteínas Portadoras/genética , Anomalías Congénitas/genética , Enfermedades Neuromusculares/genética , Factores de Transcripción/genética , Anomalías Congénitas/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Complejos Multiproteicos/genética , Mutación , Enfermedades Neuromusculares/patologíaRESUMEN
Background Infratrochlear neuralgia is a recently described painful cranial neuropathy that causes pain in the internal angle of the orbit and the medial upper eyelid, the upper bridge of the nose and/or the lacrimal caruncle. We aim to present seven new cases of infratrochlear neuralgia treated with anaesthetic nerve blocks. Methods Over an 18-month period, we prospectively identified seven cases of infratrochlear neuralgia among the patients attending the Headache Unit in a tertiary hospital. Anaesthetic blocks were performed by injecting 0.5 cc of bupivacaine 0.5% at the emergence of the nerve above the internal canthus. Results All patients were women, and the mean age was 49.1 years (standard deviation, 17.9). The pain appeared at the internal angle of the orbit and/or the medial upper eyelid in six cases, and the whole territory of the infratrochlear nerve in one case. Six patients had continuous pain and one had episodes lasting 8-24 hours. All patients showed sensory disturbances within the painful area and tenderness upon palpation of the infratrochlear nerve. Nerve blocks resulted in complete and long-lasting relief in four patients and short-lasting relief in the other three patients. Conclusions Infratrochlear neuralgia should be considered among the neuralgic causes of orbital and periorbital pain. Anaesthetic blocks may assist clinicians in the diagnosis and may also be an effective therapy.
Asunto(s)
Neuralgia Facial/cirugía , Bloqueo Nervioso/métodos , Adulto , Anciano , Anciano de 80 o más Años , Anestésicos Locales/uso terapéutico , Bupivacaína/uso terapéutico , Femenino , Humanos , Persona de Mediana Edad , Nervio Troclear/efectos de los fármacosRESUMEN
OBJECTIVE: The aim of this study was to describe clinical features unique to supratrochlear neuralgia. BACKGROUND: The supratrochlear nerve supplies the medial aspect of the forehead. Due to the intricate relationship between supraorbital and supratrochlear nerves, neuralgic pain in this region has been traditionally attributed to supraorbital neuralgia. No cases of supratrochlear neuralgia have been reported so far. METHODS: From 2009 through 2016, we prospectively recruited patients with pain confined to the territory of the supratrochlear nerve. RESULTS: Fifteen patients (13 women, 2 men; mean age 51.4 years, standard deviation 14.9) presented with pain in the lower paramedian forehead, extending to the eyebrow in two patients and to the internal angle of the orbit in another. Pain was unilateral in 11 patients (six on the right, five on the left), and bilateral in four. Six patients had continuous pain and nine described intermittent pain. Palpation of the supratrochlear nerve at the medial third of the supraorbital rim resulted in hypersensitivity in all cases. All but one patient exhibited sensory disturbances within the painful area. Fourteen patients underwent anesthetic blockades of the supratrochlear nerve, with immediate relief in all cases and long-term remission in three. Six of them had received unsuccessful anesthetic blocks of the supraorbital nerve. Five patients were treated successfully with oral drugs and one patient was treated with radiofrequency. CONCLUSIONS: Supratrochlear neuralgia is an uncommon disorder causing pain in the medial region of the forehead. It may be differentiated from supraorbital neuralgia and other similar headaches and neuralgias based on the topography of the pain and the response to anesthetic blockade.
Asunto(s)
Bloqueo Nervioso Autónomo/métodos , Neuralgia/diagnóstico , Neuralgia/terapia , Nervio Troclear/cirugía , Adulto , Anciano , Analgésicos/administración & dosificación , Nervios Craneales/efectos de los fármacos , Nervios Craneales/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Nervio Troclear/efectos de los fármacosRESUMEN
We report three siblings from a non-consanguineous family presenting with contractural limb-girdle phenotype with intrafamilial variability. Muscle MRI showed posterior thigh and quadriceps involvement with a sandwich-like sign. Whole-exome sequencing identified two compound heterozygous missense TTN variants and one heterozygous LAMA2 variant. Brain MRI performed because of concentration difficulties in one of the siblings evidenced white-matter abnormalities, subsequently found in the others. The genetic analysis was re-oriented, revealing a novel pathogenic intronic LAMA2 variant which confirmed the LAMA2-RD diagnosis. This work highlights the importance of a thorough clinical phenotyping and the importance of brain imaging, in order to orientate and interpret the genetic analysis.
Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Distrofias Musculares/diagnóstico por imagen , Distrofias Musculares/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Pruebas Genéticas , NeuroimagenRESUMEN
Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.
Asunto(s)
Enfermedades Musculares , Distrofia Muscular de Cinturas , Deficiencias en la Proteostasis , Humanos , Proteína que Contiene Valosina/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/terapia , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , FenotipoRESUMEN
BACKGROUND: The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS: We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS: Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS: Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.
Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Imagen por Resonancia Magnética/métodos , Proteína que Contiene Valosina/genéticaRESUMEN
Congenital myasthenic syndromes (CMS) are a group of heterogeneous diseases of the neuromuscular junction. We report electrodiagnostic testing (EDX) and genetic findings in a series of 120 CMS patients tested with a simple non-invasive EDX workup with surface recording of CMAPs and 3Hz repetitive nerve stimulation of accessory, radial and deep fibular nerves. Five ENMG phenotypes were retrieved based on the presence or not of R-CMAPs and the distribution pattern of decremental CMAP responses which significantly correlated with genetic findings (p <0.00001). R-CMAPs were found in all COLQ-mutated patients (CMS1A) and Slow Channel CMS (SCCMS) (CMS1B). CMS1A exhibited greater decrements in accessory nerve RNS than CMS1B. Patients without R-CMAPs were classified into CMS2A (DOK7-, MUSK-, GFPT1-, GMPPB-, TOR1AIP-mutated) when exhibiting predominant accessory nerve RNS decrements, CMS2B (CHRNE, CHRND, RAPSN) with predominant radial nerve RNS decrements, or CMS2C (AGRN) if there were predominant fibular decrements. Our algorithm may have a major impact on diagnostic and therapeutic monitoring in CMS patients, as well as for validation of the pathogenicity of genetic variants. It should also be part of the evaluation of unexplained muscle weakness or complex neuromuscular phenotypes.
Asunto(s)
Síndromes Miasténicos Congénitos , Humanos , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/terapia , Unión Neuromuscular , Fenotipo , Receptores Colinérgicos/genéticaRESUMEN
Biallelic variants in PLEKHG5 have been reported so far associated with different clinical phenotypes including Lower motor neuron disease (LMND) [also known as distal hereditary motor neuropathies (dHMN or HMN) or distal spinal muscular atrophy (DSMA4)] and intermediate Charcot-Marie-Tooth disease (CMT). We report four patients from two families presenting with intermediate CMT and atypical clinical and para-clinical findings. Patients presented with predominant distal weakness with none or mild sensory involvement and remain ambulant at last examination (22-36 years). Nerve conduction studies revealed, in all patients, intermediate motor nerve conduction velocities, reduced sensory amplitudes and multiple conduction blocks in upper limbs, outside of typical nerve compression sites. CK levels were strikingly elevated (1611-3867â¯U/L). CSF protein content was mildly elevated in two patients. Diffuse bilateral white matter lesions were detected in one patient. Genetic analysis revealed three novel frameshift variants c.1835_1860del and c.2308del (family 1) and c.104del (family 2). PLEKHG5-associated disease ranges from pure motor phenotypes with predominantly proximal involvement to intermediate CMT with predominant distal motor involvement and mild sensory symptoms. Leukoencephalopathy, elevated CK levels and the presence of conduction blocks associated with intermediate velocities in NCS are part of the phenotype and may arise suspicion of the disease, thus avoiding misdiagnosis and unnecessary therapeutics in these patients.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido , Leucoencefalopatías/genética , Conducción Nerviosa/genética , Adulto , Femenino , Pruebas Genéticas , Humanos , Masculino , Fenotipo , Adulto JovenRESUMEN
SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired.
Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas Musculares/metabolismo , Enfermedades Musculares/metabolismo , Selenoproteínas/metabolismo , Adolescente , Adulto , Animales , Calcio/metabolismo , Niño , Retículo Endoplásmico/genética , Metabolismo Energético , Femenino , Homeostasis , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Oxidación-Reducción , Selenoproteínas/genética , Adulto JovenRESUMEN
BACKGROUND: Due to their health condition, patients with neuromuscular diseases (NMD) are at greater risk of developing serious complications with COVID-19. The objective of this study was to analyze the prevalence of COVID-19 among NMD patients and the risk factors for its impact and severity during the first wave of the pandemic. Clinical data were collected from NMD-COVID-19 patients, between March 25, 2020 and May 11, 2020 in an anonymous survey carried out by expert physicians from the French Health Care Network Filnemus. RESULTS: Physicians reported 84 patients, including: 34 with myasthenia gravis, 27 with myopathy and 23 with neuropathy. COVID-19 had no effect on NMD for 48 (58%) patients and 48 (58%) patients developed low COVID-19 severity. COVID-19 caused the death of 9 (11%) NMD patients. Diabetic patients were at greater risk of dying. Patients with diabetes, hypertension or severe forms of NMD had a higher risk of developing a moderate or severe form of COVID-19. In our cohort, corticosteroids and other immunosuppressants were not significantly associated with higher COVID-19 severity for acquired NMD. CONCLUSION: During this period, a small percentage of French NMD patients was affected by COVID-19 compared to the general French population and COVID-19 had a limited short-term effect on them. Diabetes, hypertension and a severe degree of NMD were identified as risk factors of unfavorable outcome following COVID-19. Conversely, in our cohort of patients with acquired NMD, corticosteroids or other immunosuppressants did not appear to be risk factors for more severe COVID-19.
Asunto(s)
COVID-19 , Enfermedades Neuromusculares , Estudios Transversales , Humanos , Enfermedades Neuromusculares/epidemiología , Pandemias , SARS-CoV-2RESUMEN
We report seven Charcot-Marie-Tooth 4B1 (CMT4B1) patients from four families with distinctive features, presenting with severe distal weakness and cranial nerve involvement. Patient from family 1 presented with congenital varus foot deformity, progressive distal and proximal weakness leading to loss of ambulation at 14 years, bilateral facial palsy and prominent bulbar involvement. In three siblings from family 2, still ambulant in the second decade, neuropathy was associated with marked sweating and Arnold-Chiari syndrome. Patient from family 3, wheelchair-bound by 17 years, suffered from recurrent intestinal occlusion due to a mesenteric malformation. Patients from family 4, wheelchair-bound from age 6 years, were first diagnosed with type 1 Usher syndrome with congenital deafness and retinitis pigmentosa. CMT4B1 diagnosis was based upon suggestive clinical features and confirmed by the presence of recessive mutations in the MTMR2 gene. Our results expand the genetic and phenotypic spectrum of CMT4B1, which may include autonomic system involvement.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Progresión de la Enfermedad , Adolescente , Adulto , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Humanos , Masculino , Mutación , Fenotipo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Adulto JovenRESUMEN
Mutations in the FKRP gene encoding the fukutin-related protein (FKRP) cause a wide spectrum of myopathies, ranging from severe forms of congenital muscular dystrophies associated with structural abnormalities of the central nervous system, to exertional myalgia or asymptomatic hyperCKemia, and to a form of limb girdle muscular dystrophy, LGMD-R9, (ex-LGMD-2I). LGMD-R9 is characterized by a proximal girdle deficit predominantly in the lower limbs to start with, with respiratory and cardiac damage that may affect the vital prognosis. Serum CK levels are markedly elevated and, on muscle biopsy, is detected a dystrophic formula associated with a reduction in the glycosylation of α-dystroglycan by immunostains and immunoblotting. Muscle MRI typically shows damage to proximal muscles (iliopsoas, adductors, gluteus maximus, quadriceps) with relative preservation of the muscles of the anterior compartment of the thighs (gracilis and sartorius). Genetic analysis, by specific sequencing of the FKRP gene or of a panel grouping together all the genes involved in the glycosylation of α-dystroglycan, or a larger panel of genes, generally confirms the diagnosis, the most frequent mutation being the missense p.(Leu276Ile). Currently, treatment of LGMD-R9 is symptomatic, requiring a multidisciplinary approach. A prospective study of the natural history of the disease is currently underway in Europe (GNT-015-FKRP). New therapeutic approaches are envisaged, such as gene therapy mediated by vectors derived from the adeno-associated virus (AAV). This is effective in animal models, allowing correction of defects in the glycosylation of alpha-dystroglycan and an increase in its binding capacity to the extracellular matrix. At the same time, preclinical studies have shown, in an animal model, the efficacy of ribitol, an alcohol pentose found in natural compounds, which has led to a phase I trial whose clinical development is underway.
TITLE: La dystrophie musculaire des ceintures de type R9 liée au gène FKRP - État des lieux et perspectives thérapeutiques. ABSTRACT: Les mutations du gène FKRP codant la fukutin-related protein (FKRP) sont à l'origine d'un large éventail de myopathies allant de formes sévères de dystrophies musculaires congénitales associées à des anomalies structurales du système nerveux central, jusqu'à des tableaux de myalgies à l'effort ou d'hyperCKémie asymptomatique, en passant par une forme de dystrophie musculaire des ceintures, la LGMD-R9 (ex-LGMD-2I), pour limb girdle muscular dystrophy récessive de type R9. La LGMD-R9 se caractérise par un déficit proximal des ceintures prédominant initialement aux membres inférieurs, avec une atteinte respiratoire et cardiaque pouvant conditionner le pronostic vital. Le taux sérique de CPK est nettement élevé et s'accompagne, sur la biopsie musculaire, d'une formule dystrophique associée à une réduction de la glycosylation de l'α-dystroglycane visible en immunomarquage et par immunoblot. L'IRM musculaire montre typiquement une atteinte des muscles proximaux (iliopsoas, adducteurs, grands fessiers, quadriceps) avec une relative préservation des muscles de la loge antérieure des cuisses (gracilis et sartorius). L'analyse génétique, par séquençage spécifique du gène FKRP ou d'un panel regroupant l'ensemble des gènes impliqués dans la glycosylation de l'α-dystroglycane, ou bien d'un panel plus large de gènes, confirme généralement le diagnostic, la mutation la plus fréquente étant le faux-sens p.(Leu276Ile). Actuellement, le traitement de la LGMD-R9 est symptomatique, requérant une approche pluridisciplinaire. Une étude prospective d'histoire naturelle de la maladie est en cours en Europe (GNT-015-FKRP). Des approches thérapeutiques inédites sont envisagées, telles que la thérapie génique médiée par des vecteurs dérivés du virus adéno-associé (AAV). Celle-ci est efficace dans les modèles animaux, permettant une correction des défauts de glycosylation de l'a-dystroglycane et une augmentation de sa capacité de liaison à la matrice extracellulaire. En parallèle, des études précliniques ont montré, dans un modèle animal, l'efficacité du ribitol, un pentose alcool retrouvé dans des composés naturels, ce qui a conduit à un essai de phase I dont le développement clinique est en cours.
Asunto(s)
Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Pentosiltransferasa/genética , Animales , Diagnóstico Diferencial , Humanos , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/epidemiología , Mutación Missense , Ribitol/uso terapéutico , Terapias en Investigación/métodos , Terapias en Investigación/tendenciasRESUMEN
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.