RESUMEN
ABSTRACT: Relapsed or refractory acute myeloid leukemia (AML) remains a major therapeutic challenge. We have recently developed a Vδ1+ γδ T cell-based product for adoptive immunotherapy, named Delta One T (DOT) cells, and demonstrated their cytolytic capacity to eliminate AML cell lines and primary blasts in vitro and in vivo. However, the molecular mechanisms responsible for the broad DOT-cell recognition of AML cells remain poorly understood. Here, we dissected the role of natural killer (NK) cell receptor ligands in AML cell recognition by DOT cells. Screening of multiple AML cell lines highlighted a strong upregulation of the DNAM-1 ligands, CD155/pulmonary vascular resistance (PVR), CD112/nectin-2, as well as the NKp30 ligand, B7-H6, in contrast with NKG2D ligands. CRISPR-mediated ablation revealed key nonredundant and synergistic contributions of PVR and B7-H6 but not nectin-2 to DOT-cell targeting of AML cells. We further demonstrate that PVR and B7-H6 are critical for the formation of robust immunological synapses between AML and DOT cells. Importantly, PVR but not B7-H6 expression in primary AML samples predicted their elimination by DOT cells. These data provide new mechanistic insight into tumor targeting by DOT cells and suggest that assessing PVR expression levels may be highly relevant to DOT cell-based clinical trials.
Asunto(s)
Citotoxicidad Inmunológica , Leucemia Mieloide Aguda , Humanos , Células Asesinas Naturales , Linfocitos T , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Línea CelularRESUMEN
B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ~85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival (<30%), frequent relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis and that anti-NG2 immunotherapy strongly reduces/delays relapse in MLLr B-ALL xenograft models. Despite its contribution to MLLr B-ALL pathogenesis and its diagnostic utility, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-AF4 fusion protein. NG2 negatively regulates the expression of the GC receptor NR3C1 and confers GC resistance to MLLr B-ALL cells in vitro and in vivo. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via AP-1-mediated trans-repression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.
RESUMEN
Cellular ontogeny and MLL breakpoint site influence the capacity of MLL-edited CD34+ hematopoietic cells to initiate and recapitulate infant patients' features in pro-B-cell acute lymphoblastic leukemia (B-ALL). We provide key insights into the leukemogenic determinants of MLL-AF4+ infant B-ALL.
Asunto(s)
Edición Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Lactante , Humanos , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Células Madre Hematopoyéticas , Proteínas de Fusión Oncogénica/genéticaRESUMEN
B-cell acute lymphoblastic leukemia (ALL; B-ALL) is the most common pediatric cancer, and high hyperdiploidy (HyperD) identifies the most common subtype of pediatric B-ALL. Despite HyperD being an initiating oncogenic event affiliated with childhood B-ALL, the mitotic and chromosomal defects associated with HyperD B-ALL (HyperD-ALL) remain poorly characterized. Here, we have used 54 primary pediatric B-ALL samples to characterize the cellular-molecular mechanisms underlying the mitotic/chromosome defects predicated to be early pathogenic contributors in HyperD-ALL. We report that HyperD-ALL blasts are low proliferative and show a delay in early mitosis at prometaphase, associated with chromosome-alignment defects at the metaphase plate leading to robust chromosome-segregation defects and nonmodal karyotypes. Mechanistically, biochemical, functional, and mass-spectrometry assays revealed that condensin complex is impaired in HyperD-ALL cells, leading to chromosome hypocondensation, loss of centromere stiffness, and mislocalization of the chromosome passenger complex proteins Aurora B kinase (AURKB) and Survivin in early mitosis. HyperD-ALL cells show chromatid cohesion defects and an impaired spindle assembly checkpoint (SAC), thus undergoing mitotic slippage due to defective AURKB and impaired SAC activity, downstream of condensin complex defects. Chromosome structure/condensation defects and hyperdiploidy were reproduced in healthy CD34+ stem/progenitor cells upon inhibition of AURKB and/or SAC. Collectively, hyperdiploid B-ALL is associated with a defective condensin complex, AURKB, and SAC.
Asunto(s)
Adenosina Trifosfatasas , Aurora Quinasa B , Aberraciones Cromosómicas , Cromosomas Humanos , Proteínas de Unión al ADN , Metafase/genética , Complejos Multiproteicos , Proteínas de Neoplasias , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genéticaRESUMEN
The Wnt canonical ligands elicit the activation of ß-catenin transcriptional activity, a response dependent on, but not limited to, ß-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the ß-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of ß-catenin stabilization by Wnt.
Asunto(s)
Cadherinas/fisiología , Cateninas/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Cuerpos Multivesiculares/metabolismo , Vía de Señalización Wnt , Animales , Cadherinas/metabolismo , Cateninas/metabolismo , Caveolinas/metabolismo , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/análisis , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/análisis , Ratones , Fosforilación , Proteína Wnt3A/metabolismo , Proteína Wnt3A/fisiología , Catenina deltaRESUMEN
A role for Rac1 GTPase in canonical Wnt signaling has recently been demonstrated, showing that it is required for ß-catenin translocation to the nucleus. In this study, we investigated the mechanism of Rac1 stimulation by Wnt. Upregulation of Rac1 activity by Wnt3a temporally correlated with enhanced p120-catenin binding to Rac1 and Vav2. Vav2 and Rac1 association with p120-catenin was modulated by phosphorylation of this protein, which was stimulated upon serine/threonine phosphorylation by CK1 and inhibited by tyrosine phosphorylation by Src or Fyn. Acting on these two post-translational modifications, Wnt3a induced the release of p120-catenin from E-cadherin, enabled the interaction of p120-catenin with Vav2 and Rac1, and facilitated Rac1 activation by Vav2. Given that p120-catenin depletion disrupts gastrulation in Xenopus, we analyzed p120-catenin mutants for their ability to rescue this phenotype. In contrast to the wild-type protein or other controls, p120-catenin point mutants that were deficient in the release from E-cadherin or in Vav2 or Rac1 binding failed to rescue p120-catenin depletion. Collectively, these results indicate that binding of p120-catenin to Vav2 and Rac1 is required for the activation of this GTPase upon Wnt signaling.
Asunto(s)
Cateninas/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Proteína Wnt3A/farmacología , Proteína de Unión al GTP rac1/metabolismo , Animales , Cadherinas/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Activación Enzimática/efectos de los fármacos , Gastrulación/efectos de los fármacos , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Xenopus/embriología , Xenopus/metabolismo , beta Catenina/metabolismo , Catenina deltaRESUMEN
Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.
Asunto(s)
Aneuploidia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Animales , Ratones , Inestabilidad Cromosómica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Progresión de la EnfermedadRESUMEN
Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.
RESUMEN
p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. We describe here that p120-catenin is required for Wnt pathway signaling. p120-catenin binds and is phosphorylated by CK1ε in response to Wnt3a. p120-catenin also associates to the Wnt co-receptor LRP5/6, an interaction mediated by E-cadherin, showing an unexpected physical link between adherens junctions and a Wnt receptor. Depletion of p120-catenin abolishes CK1ε binding to LRP5/6 and prevents CK1ε activation upon Wnt3a stimulation. Elimination of p120-catenin also inhibits early responses to Wnt, such as LRP5/6 and Dvl-2 phosphorylation and axin recruitment to the signalosome, as well as later effects, such as ß-catenin stabilization. Moreover, since CK1ε is also required for E-cadherin phosphorylation, a modification that decreases the affinity for ß-catenin, p120-catenin depletion prevents the increase in ß-catenin transcriptional activity even in the absence of ß-catenin degradation. Therefore, these results demonstrate a novel and crucial function of p120-catenin in Wnt signaling and unveil additional points of regulation by this factor of ß-catenin transcriptional activity different of ß-catenin stability.
Asunto(s)
Caseína Cinasa 1 épsilon/metabolismo , Cateninas/metabolismo , Proteínas Wnt/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Caseína Cinasa 1 épsilon/genética , Cateninas/genética , Línea Celular Tumoral , Proteínas Dishevelled , Humanos , Inmunoprecipitación , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Espectrometría de Masas , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Catenina deltaRESUMEN
Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs. Moreover, the use of MSC-derived extracellular vesicles (MSC-EVs) is being actively explored as a cell-free therapeutic alternative over the parental MSCs. We hypothesized that the introduction of a "suicide gene" switch into MSCs may offer on-demand in vivo apoptosis of transplanted MSCs. Here, we prompted to investigate the utility of the iCasp9/AP1903 suicide gene system in inducing apoptosis of MSCs. iCasp9/AP1903-induced apoptotic MSCs (MSCiCasp9+) were tested in vitro and in in vivo models of acute colitis. Our data show a very similar and robust immunosuppressive and anti-inflammatory properties of both "parental" alive MSCGFP+ cells and apoptotic MSCiCasp9+ cells in vitro and in vivo regardless of whether apoptosis was induced in vivo or in vitro before administering MSCiCasp9+ lysates. This development of an efficient iCasp9 switch may potentiate the safety of MSC-based therapies in the case of an adverse event and, will also circumvent current logistic technical limitations and biological uncertainties associated to MSC-EVs.
Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Antiinflamatorios , Caspasa 9 , Vesículas Extracelulares/trasplante , Humanos , Inmunomodulación , InmunosupresoresRESUMEN
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Patients with AML harboring a constitutively active internal tandem duplication mutation (ITDMUT) in the FMS-like kinase tyrosine kinase (FLT3) receptor generally have a poor prognosis. Several tyrosine kinase/FLT3 inhibitors have been developed and tested clinically, but very few (midostaurin and gilteritinib) have thus far been FDA/EMA-approved for patients with newly diagnosed or relapse/refractory FLT3-ITDMUT AML. Disappointingly, clinical responses are commonly partial or not durable, highlighting the need for new molecules targeting FLT3-ITDMUT AML. Here, we tested EC-70124, a hybrid indolocarbazole analog from the same chemical space as midostaurin with a potent and selective inhibitory effect on FLT3. In vitro, EC-70124 exerted a robust and specific antileukemia activity against FLT3-ITDMUT AML primary cells and cell lines with respect to cytotoxicity, CFU capacity, apoptosis and cell cycle while sparing healthy hematopoietic (stem/progenitor) cells. We also analyzed its efficacy in vivo as monotherapy using two different xenograft models: an aggressive and systemic model based on MOLM-13 cells and a patient-derived xenograft model. Orally disposable EC-70124 exerted a potent inhibitory effect on the growth of FLT3-ITDMUT AML cells, delaying disease progression and debulking the leukemia. Collectively, our findings show that EC-70124 is a promising and safe agent for the treatment of AML with FLT3-ITDMUT.
RESUMEN
CD19-directed chimeric antigen receptors (CAR) T cells induce impressive rates of complete response in advanced B-cell malignancies, specially in B-cell acute lymphoblastic leukemia (B-ALL). However, CAR T-cell-treated patients eventually progress due to poor CAR T-cell persistence and/or disease relapse. The bone marrow (BM) is the primary location for acute leukemia. The rapid/efficient colonization of the BM by systemically infused CD19-CAR T cells might enhance CAR T-cell activity and persistence, thus, offering clinical benefits. Circulating cells traffic to BM upon binding of tetrasaccharide sialyl-Lewis X (sLeX)-decorated E-selectin ligands (sialofucosylated) to the E-selectin receptor expressed in the vascular endothelium. sLeX-installation in E-selectin ligands is achieved through an ex vivo fucosylation reaction. Here, we sought to characterize the basal and cell-autonomous display of sLeX in CAR T-cells activated using different cytokines, and to assess whether exofucosylation of E-selectin ligands improves CD19-CAR T-cell activity and BM homing. We report that cell-autonomous sialofucosylation (sLeX display) steadily increases in culture- and in vivo-expanded CAR T cells, and that, the cytokines used during T-cell activation influence both the degree of such endogenous sialofucosylation and the CD19-CAR T-cell efficacy and persistence in vivo. However, glycoengineered enforced sialofucosylation of E-selectin ligands was dispensable for CD19-CAR T-cell activity and BM homing in multiple xenograft models regardless the cytokines employed for T-cell expansion, thus, representing a dispensable strategy for CD19-CAR T-cell therapy.
Asunto(s)
Antígenos CD19/inmunología , Médula Ósea/inmunología , Selectina E/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Antígeno Sialil Lewis X/inmunología , Animales , Endotelio Vascular/inmunología , Ligandos , Ratones , Ratones Endogámicos NOD , Modelos AnimalesRESUMEN
B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.
Asunto(s)
Reordenamiento Génico de Linfocito B , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Islas de CpG , Metilación de ADN , Epigénesis Genética , Epigenoma , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Humanos , Lactante , Ratones , Ratones Endogámicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: Despite the remarkable activity of BTK inhibitors (BTKi) in relapsed B-cell non-Hodgkin lymphoma (B-NHL), no clinically-relevant biomarker has been associated to these agents so far. The relevance of phosphoproteomic profiling for the early identification of BTKi responders remains underexplored. EXPERIMENTAL DESIGN: A set of six clinical samples from an ongoing phase I trial dosing patients with chronic lymphocytic leukemia (CLL) with TG-1701, a novel irreversible and highly specific BTKi, were characterized by phosphoproteomic and RNA sequencing (RNA-seq) analysis. The activity of TG-1701 was evaluated in a panel of 11 B-NHL cell lines and mouse xenografts, including two NF-κB- and BTKC481S-driven BTKi-resistant models. Biomarker validation and signal transduction analysis were conducted through real-time PCR, Western blot analysis, immunostaining, and gene knockout (KO) experiments. RESULTS: A nonsupervised, phosphoproteomic-based clustering did match the early clinical outcomes of patients with CLL and separated a group of "early-responders" from a group of "late-responders." This clustering was based on a selected list of 96 phosphosites with Ikaros-pSer442/445 as a potential biomarker for TG-1701 efficacy. TG-1701 treatment was further shown to blunt Ikaros gene signature, including YES1 and MYC, in early-responder patients as well as in BTKi-sensitive B-NHL cell lines and xenografts. In contrast, Ikaros nuclear activity and signaling remained unaffected by the drug in vitro and in vivo in late-responder patients and in BTKC481S, BTKKO, and noncanonical NF-κB models. CONCLUSIONS: These data validate phosphoproteomic as a valuable tool for the early detection of response to BTK inhibition in the clinic, and for the determination of drug mechanism of action.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma no Hodgkin , Agammaglobulinemia Tirosina Quinasa , Animales , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Ratones , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de SeñalRESUMEN
BACKGROUND: Although adoptive transfer of CD19-directed chimeric antigen receptor (CAR) T-cells (CD19-CAR T-cells) achieves high rates of complete response in patients with B-cell acute lymphoblastic leukemia (B-ALL), relapse is common. Bone marrow (BM) mesenchymal stem/stromal cells (BM-MSC) are key components of the hematopoietic niche and are implicated in B-ALL pathogenesis and therapy resistance. MSC exert an immunosuppressive effect on T-cells; however, their impact on CD19-CAR T-cell activity is understudied. METHODS: We performed a detailed characterization of BM-MSC from pediatric patients with B-ALL (B-ALL BM-MSC), evaluated their immunomodulatory properties and their impact on CD19-CAR T-cell activity in vitro using microscopy, qRT-PCR, ELISA, flow cytometry analysis and in vivo using a preclinical model of severe colitis and a B-ALL xenograft model. RESULTS: While B-ALL BM-MSC were less proliferative than those from age-matched healthy donors (HD), the morphology, immunophenotype, differentiation potential and chemoprotection was very similar. Likewise, both BM-MSC populations were equally immunosuppressive in vitro and anti-inflammatory in an in vivo model of severe colitis. Interestingly, BM-MSC failed to impair CD19-CAR T-cell cytotoxicity or cytokine production in vitro using B-ALL cell lines and primary B-ALL cells. Finally, the growth of NALM6 cells was controlled in vivo by CD19-CAR T-cells irrespective of the absence/presence of BM-MSC. CONCLUSIONS: Collectively, our data demonstrate that pediatric B-ALL and HD BM-MSC equally immunosuppress T-cell responses but do not compromise CD19-CAR T-cell activity.
Asunto(s)
Antígenos CD19/inmunología , Médula Ósea/inmunología , Terapia de Inmunosupresión/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Femenino , Humanos , Masculino , Ratones , Microambiente TumoralRESUMEN
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120-catenin for the association with the Wnt5a co-receptor Ror2. Wnt5a promotes the formation of the Ror2-Fz complex and enables the activation of Ror2-bound CK1ε by Fz-associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal-dependent degradation in the absence of this kinase. Although p120-catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120-catenin binds and maintains Ror2 at the plasma membrane; in p120-depleted cells, Ror2 is rapidly internalized through a clathrin-dependent mechanism. Accordingly, downregulation of p120-catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120-catenin and CK1ε as two critical factors controlling Ror2 function.
Asunto(s)
Caseína Quinasas/metabolismo , Cateninas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Vía de Señalización Wnt , Animales , Endocitosis , Células HEK293 , Humanos , Ligandos , Lisosomas/metabolismo , Ratones , Modelos Biológicos , Fosforilación , Unión Proteica , Catenina deltaRESUMEN
Activation of the Wnt pathway promotes the progressive phosphorylation of coreceptor LRP5/6 (low-density lipoprotein receptor-related proteins 5 and 6), creating a phosphorylated motif that inhibits glycogen synthase kinase 3ß (GSK-3ß), which in turn stabilizes ß-catenin, increasing the transcription of ß-catenin target genes. Casein kinase 1 (CK1) kinase family members play a complex role in this pathway, either as inhibitors or as activators. In this report, we have dissected the roles of CK1 isoforms in the early steps of Wnt signaling. CK1ε is constitutively bound to LRP5/6 through its interaction with p120-catenin and E-cadherin or N-cadherin and is activated upon Wnt3a stimulation. CK1α also associates with the LRP5/6/p120-catenin complex but, differently from CK1ε, only after Wnt3a addition. Binding of CK1α is dependent on CK1ε and occurs in a complex with axin. The two protein kinases function sequentially: whereas CK1ε is required for early responses to Wnt3a stimulation, such as recruitment of Dishevelled 2 (Dvl-2), CK1α participates in the release of p120-catenin from the complex, which activates p120-catenin for further actions on this pathway. Another CK1, CK1γ, acts at an intermediate level, since it is not necessary for Dvl-2 recruitment but for LRP5/6 phosphorylation at Thr1479 and axin binding. Therefore, our results indicate that CK1 isoforms work coordinately to promote the full response to Wnt stimulus.