Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37607539

RESUMEN

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , ARN , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , ARN Mensajero
2.
Development ; 147(22)2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33144401

RESUMEN

The inability of the adult mammalian heart to regenerate represents a fundamental barrier in heart failure management. By contrast, the neonatal heart retains a transient regenerative capacity, but the underlying mechanisms for the developmental loss of cardiac regenerative capacity in mammals are not fully understood. Wnt/ß-catenin signalling has been proposed as a key cardioregenerative pathway driving cardiomyocyte proliferation. Here, we show that Wnt/ß-catenin signalling potentiates neonatal mouse cardiomyocyte proliferation in vivo and immature human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) proliferation in vitro By contrast, Wnt/ß-catenin signalling in adult mice is cardioprotective but fails to induce cardiomyocyte proliferation. Transcriptional profiling and chromatin immunoprecipitation sequencing of neonatal mouse and hPSC-CMs revealed a core Wnt/ß-catenin-dependent transcriptional network governing cardiomyocyte proliferation. By contrast, ß-catenin failed to re-engage this neonatal proliferative gene network in the adult heart despite partial transcriptional re-activation of a neonatal glycolytic gene programme. These findings suggest that ß-catenin might be repurposed from regenerative to protective functions in the adult heart in a developmental process dependent on the metabolic status of cardiomyocytes.


Asunto(s)
Proliferación Celular , Redes Reguladoras de Genes , Miocitos Cardíacos/metabolismo , Transcripción Genética , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/citología , beta Catenina/genética
3.
J Mol Cell Cardiol ; 163: 20-32, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34624332

RESUMEN

Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.


Asunto(s)
Corazón , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Mamíferos , Ratones
4.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33682422

RESUMEN

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Asunto(s)
Corazón/fisiopatología , Receptores de Progesterona/metabolismo , Femenino , Humanos , Masculino , Factores Sexuales
5.
Proc Natl Acad Sci U S A ; 116(9): 3614-3623, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755533

RESUMEN

Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.


Asunto(s)
Insuficiencia Cardíaca/prevención & control , Regeneración/genética , Hormonas Tiroideas/metabolismo , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/fisiopatología , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Metamorfosis Biológica/genética , Ratones , Salamandridae/genética , Salamandridae/crecimiento & desarrollo , Hormonas Tiroideas/administración & dosificación , Hormonas Tiroideas/genética , Xenopus laevis/crecimiento & desarrollo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
6.
Biotechnol Appl Biochem ; 67(5): 774-782, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31957059

RESUMEN

Lignin is the second most abundant polymer after cellulose in lignocellulosic biomass. Its aromatic composition and recalcitrant nature make its valorization a major challenge for obtaining low molecular weight aromatics compounds with high value-added from the enzymatic depolymerization of industrial lignins. The oxidation reaction of lignin polymer using laccases alone remains inefficient. Therefore, researches are focused on the use of a laccase-mediator system (LMS) to facilitate enzymatic depolymerization. Until today, the LMS system was studied using water-soluble lignin only (commercial lignins, modified lignins, or lignin model compounds). This work reports a study of three LMS systems to depolymerize the three major industrial lignins (organosolv lignin, Kraft lignin, and sodium lignosulfonate). We show that an enzymatic depolymerization of these lignins can be achieved by LMS using laccase from Trametes versicolor, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt as mediator and a cosolvent (25% of 1,4-dioxane) to enhance the solubilization of lignins.


Asunto(s)
Lacasa/metabolismo , Lignina/metabolismo , Polyporaceae/enzimología , Biocatálisis , Dioxanos/metabolismo , Oxidación-Reducción , Polyporaceae/metabolismo , Solubilidad , Ácidos Sulfónicos/metabolismo
8.
J Biol Chem ; 287(10): 7427-35, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22232554

RESUMEN

Adult mammalian cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by a limited combination of transcription factors. To date, most current iPSC generation protocols rely on viral vector usage in vitro, using cells removed from their physiological context. Such protocols are hindered by low derivation efficiency and risks associated with genome modifications of reprogrammed cells. Here, we reprogrammed cells in an in vivo context using non-viral somatic transgenesis in Xenopus tadpole tail muscle, a setting that provides long term expression of non-integrated transgenes in vivo. Expression of mouse mOct4, mSox2, and mKlf4 (OSK) led rapidly and reliably to formation of proliferating cell clusters. These clusters displayed the principal hallmarks of pluripotency: alkaline phosphatase activity, up-regulation of key epigenetic and chromatin remodeling markers, and reexpression of endogenous pluripotent markers. Furthermore, these clusters were capable of differentiating into derivatives of the three germ layers in vitro and into neurons and muscle fibers in vivo. As in situ reprogramming occurs along with muscle tissue repair, the data provide a link between these two processes and suggest that they act synergistically. Notably, every OSK injection resulted in cluster formation. We conclude that reprogramming is achievable in an anamniote model and propose that in vivo approaches could provide rapid and efficient alternative for non-viral iPSC production. The work opens new perspectives in basic stem cell research and in the longer term prospect of regenerative medicine protocols development.


Asunto(s)
Desdiferenciación Celular , Proliferación Celular , Factores de Transcripción de Tipo Kruppel/biosíntesis , Fibras Musculares Esqueléticas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Animales , Expresión Génica , Técnicas de Transferencia de Gen , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Larva/citología , Larva/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Xenopus laevis
9.
NPJ Regen Med ; 4: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452940

RESUMEN

The lymphatic vasculature mediates essential physiological functions including fluid homeostasis, lipid and hormone transport, and immune cell trafficking. Recent studies have suggested that promoting lymphangiogenesis enhances cardiac repair following injury, but it is unknown whether lymphangiogenesis is required for cardiac regeneration. Here, we describe the anatomical distribution, regulation, and function of the cardiac lymphatic network in a highly regenerative zebrafish model system using transgenic reporter lines and loss-of-function approaches. We show that zebrafish lacking functional vegfc and vegfd signaling are devoid of a cardiac lymphatic network and display cardiac hypertrophy in the absence of injury, suggesting a role for these vessels in cardiac tissue homeostasis. Using two different cardiac injury models, we report a robust lymphangiogenic response following cryoinjury, but not following apical resection injury. Although the majority of mutants lacking functional vegfc and vegfd signaling were able to mount a full regenerative response even in the complete absence of a cardiac lymphatic vasculature, cardiac regeneration was severely impaired in a subset of mutants, which was associated with heightened pro-inflammatory cytokine signaling. These findings reveal a context-dependent requirement for the lymphatic vasculature during cardiac growth and regeneration.

10.
Biomaterials ; 198: 217-227, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30527761

RESUMEN

Three dimensional engineered culture systems are powerful tools to rapidly expand our knowledge of human biology and identify novel therapeutic targets for disease. Bioengineered skeletal muscle has been recently shown to recapitulate many features of native muscle biology. However, current skeletal muscle bioengineering approaches require large numbers of cells, reagents and labour, limiting their potential for high-throughput studies. Herein, we use a miniaturized 96-well micro-muscle platform to facilitate semi-automated tissue formation, culture and analysis of human skeletal micro muscles (hµMs). Utilising an iterative screening approach we define a serum-free differentiation protocol that drives rapid, directed differentiation of human myoblast to skeletal myofibres. The resulting hµMs comprised organised bundles of striated and functional myofibres, which respond appropriately to electrical stimulation. Additionally, we developed an optogenetic approach to chronically stimulate hµM to recapitulate known features of exercise training including myofibre hypertrophy and increased expression of metabolic proteins. Taken together, our miniaturized approach provides a new platform to enable high-throughput studies of human skeletal muscle biology and exercise physiology.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Mioblastos/citología , Ingeniería de Tejidos/métodos , Línea Celular , Estimulación Eléctrica , Humanos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Optogenética
11.
PLoS One ; 12(3): e0173418, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278282

RESUMEN

Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy.


Asunto(s)
Endoscopía , Sarcómeros/patología , Cirugía Asistida por Computador/efectos adversos , Cirugía Torácica , Xenopus laevis , Amputación Quirúrgica/efectos adversos , Animales , Biomarcadores/metabolismo , Femenino , Fibrosis , Sarcómeros/metabolismo , Factores de Tiempo , Regulación hacia Arriba
12.
NPJ Regen Med ; 1: 16012, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29302337

RESUMEN

There are 64,000 living species of vertebrates on our planet and all of them have a heart. Comparative analyses devoted to understanding the regenerative potential of the myocardium have been performed in a dozen vertebrate species with the aim of developing regenerative therapies for human heart disease. Based on this relatively small selection of animal models, important insights into the evolutionary conservation of regenerative mechanisms have been gained. In this review, we survey cardiac regeneration studies in diverse species to provide an evolutionary context for the lack of regenerative capacity in the adult mammalian heart. Our analyses highlight the importance of cardiac adaptations that have occurred over hundreds of millions of years during the transition from aquatic to terrestrial life, as well as during the transition from the womb to an oxygen-rich environment at birth. We also discuss the evolution and ontogeny of cardiac morphological, physiological and metabolic adaptations in the context of heart regeneration. Taken together, our findings suggest that cardiac regenerative potential correlates with a low-metabolic state, the inability to regulate body temperature, low heart pressure, hypoxia, immature cardiomyocyte structure and an immature immune system. A more complete understanding of the evolutionary context and developmental mechanisms governing cardiac regenerative capacity would provide stronger scientific foundations for the translation of cardiac regeneration therapies into the clinic.

13.
PLoS One ; 9(1): e85104, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465486

RESUMEN

Though pluripotency is well characterized in mammals, many questions remain to be resolved regarding its evolutionary history. A necessary prerequisite for addressing this issue is to determine the phylogenetic distributions and orthology relationships of the transcription factor families sustaining or modulating this property. In mammals, the NANOG homeodomain transcription factor is one of the core players in the pluripotency network. However, its evolutionary history has not been thoroughly studied, hindering the interpretation of comparative studies. To date, the NANOG family was thought to be monogenic, with numerous pseudogenes described in mammals, including a tandem duplicate in Hominidae. By examining a wide-array of craniate genomes, we provide evidence that the NANOG family arose at the latest in the most recent common ancestor of osteichthyans and that NANOG genes are frequently found as tandem duplicates in sarcopterygians and as a single gene in actinopterygians. Their phylogenetic distribution is thus reminiscent of that recently shown for Class V POU paralogues, another key family of pluripotency-controlling factors. However, while a single ancestral duplication has been reported for the Class V POU family, we suggest that multiple independent duplication events took place during evolution of the NANOG family. These multiple duplications could have contributed to create a layer of complexity in the control of cell competence and pluripotency, which could explain the discrepancies relative to the functional evolution of this important gene family. Further, our analysis does not support the hypothesis that loss of NANOG and emergence of the preformation mode of primordial germ cell specification are causally linked. Our study therefore argues for the need of further functional comparisons between NANOG paralogues, notably regarding the novel duplicates identified in sauropsids and non-eutherian mammals.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio/genética , Animales , Sitios Genéticos , Humanos , Proteína Homeótica Nanog , Filogenia , Homología de Secuencia de Aminoácido , Sintenía/genética
14.
PLoS One ; 7(5): e36855, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606298

RESUMEN

Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Ratones , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética
15.
Colloids Surf B Biointerfaces ; 73(2): 315-24, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19559578

RESUMEN

This paper focuses on the immobilization of a proteolytic enzyme, trypsin, on plasma polymerized allylamine (ppAA) films. The later have been deposited onto silicon substrate by means of radiofrequency glow discharge. The covalent attachment of the enzyme was achieved in three steps: (i) activation of the polymer surface with glutaraldehyde (GA) as a linker, (ii) immobilization of trypsin and (iii) imino groups reduction treatment. The effects and efficiency of each step were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Fluorescent spectroscopy was used to evaluate the change of the biological activity following the immobilization steps. The results showed that enzyme immobilization on GA-modified substrate increases the enzyme activity by 50% comparing to adsorbed enzymes, while the imino reduction treatment improves the enzyme retention by about 30% comparing to untreated samples. In agreement with XPS and AFM data, UV-vis absorption spectroscopy, used to quantify the amount of immobilized enzyme, showed that allylamine plasma polymer presents a high adsorption yield of trypsin. Although the adsorbed enzymes exhibit a lower activity than that measured for enzymes grafted through GA linkers, the highest catalytic activity obtained was for the enzymes that underwent the three steps of the immobilization process.


Asunto(s)
Alilamina/metabolismo , Polímeros/metabolismo , Tripsina/metabolismo , Animales , Bovinos , Fluorometría , Proteínas Inmovilizadas/metabolismo , Proteínas Inmovilizadas/ultraestructura , Microscopía de Fuerza Atómica , Reproducibilidad de los Resultados , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Tripsina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA