Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Phytopathology ; 109(12): 2116-2123, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600112

RESUMEN

Fusarium head blight (FHB) is one of the most important cereal diseases worldwide, causing yield losses and contamination of harvested products with mycotoxins. Fusarium graminearum is one of the most common FHB-causing species in wheat and barley cropping systems. We assessed the ability of different botanical extracts to suppress essential stages of the fungal life cycle using three strains of F. graminearum (FG0410, FG2113, and FG1145). The botanicals included aqueous extracts from white mustard (Sinapis alba) seed flour (Pure Yellow Mustard [PYM] and Tillecur [Ti]) as well as milled Chinese galls (CG). At 2% concentration (wt/vol), PYM and Ti completely inhibited growth of mycelium of all F. graminearum strains whereas, at 1%, CG reduced the growth by 65 to 83%, depending on the strain. While PYM and Ti reduced the germination of both conidia and ascospores at 2% (wt/vol), CG was only effective in reducing conidia germination. Perithecia formation of FG0410 but not FG2113 was suppressed by all botanicals. Moreover, application of botanicals on mature perithecia led to a two- to fourfold reduction in discharge of ascospores. Using liquid chromatography (LC) with diode array detection, we quantified the principal glucosinolate component sinalbin of PYM and Ti. LC time-of-flight mass spectrometry was used to demonstrate that the bioactive matrix of CG contains different gallotannins as well as gallic and tannic acids. Possible antifungal mechanisms of the botanical matrices are discussed. The results of this study are promising and suggest that PYM, Ti, and CG should be explored further for efficacy at managing FHB.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fusarium , Micotoxinas , Extractos Vegetales , Antifúngicos/química , Antifúngicos/farmacología , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Esporas Fúngicas/efectos de los fármacos
3.
Environ Sci Technol ; 46(24): 13067-75, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23145781

RESUMEN

Mycotoxins are secondary metabolites that are naturally produced by fungi which infest and contaminate agricultural crops and commodities (e.g., small grain cereals, fruits, vegetables, and organic soil material). Although these compounds have extensively been studied in food and feed, only little is known about their environmental fate. Therefore, we investigated over nearly two years the occurrence of various mycotoxins in a field cropped with winter wheat of the variety Levis, which was artificially inoculated with Fusarium spp., as well as their emission via drainage water. Mycotoxins were regularly quantified in whole wheat plants (0.1-133 mg/kg(dry weight), for deoxynivalenol), and drainage water samples (0.8 ng/L to 1.14 µg/L, for deoxynivalenol). From the mycotoxins quantified in wheat (3-acetyl-deoxynivalenol, deoxynivalenol, fusarenone-X, nivalenol, HT-2 toxin, T-2 toxin, beauvericin, and zearalenone), only the more hydrophilic ones or those prevailing at high concentrations were detected in drainage water. Of the total amounts produced in wheat plants (min: 2.3; max: 292 g/ha/y), 0.5-354 mg/ha/y, i.e. 0.002-0.12%, were emitted via drainage water. Hence, these compounds add to the complex mixture of natural and anthropogenic micropollutants particularly in small rural water bodies, receiving mainly runoff from agricultural areas.


Asunto(s)
Agricultura , Microbiología Ambiental , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Micotoxinas/análisis , Micotoxinas/biosíntesis , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Drenaje de Agua , Ecotoxicología , Fusarium/fisiología , Estaciones del Año , Semillas/microbiología , Triticum/crecimiento & desarrollo , Triticum/microbiología , Microbiología del Agua
4.
Commun Biol ; 4(1): 262, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637874

RESUMEN

Routinely, fungal-fungal interactions (FFI) are studied on agar surfaces. However, this format restricts high-resolution dynamic imaging. To gain experimental access to FFI at the hyphal level in real-time, we developed a microfluidic platform, a FFI device. This device utilises microchannel geometry to enhance the visibility of hyphal growth and provides control channels to allow comparisons between localised and systemic effects. We demonstrate its function by investigating the FFI between the biological control agent (BCA) Clonostachys rosea and the plant pathogen Fusarium graminearum. Microscope image analyses confirm the inhibitory effect of the necrotrophic BCA and we show that a loss of fluorescence in parasitised hyphae of GFP-tagged F. graminearum coincides with the detection of GFP in mycelium of C. rosea. The versatility of our device to operate under both water-saturated and nutrient-rich as well as dry and nutrient-deficient conditions, coupled with its spatio-temporal output, opens new opportunities to study relationships between fungi.


Asunto(s)
Fusarium/fisiología , Hifa/fisiología , Hypocreales/fisiología , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía Fluorescente , Control Biológico de Vectores , Fusarium/genética , Fusarium/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Viabilidad Microbiana , Factores de Tiempo
5.
Front Microbiol ; 11: 1595, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849332

RESUMEN

Fusarium graminearum is a phytopathogenic fungus that causes Fusarium head blight in small-grain cereals, such as wheat, with significant yield reductions. Moreover, it contaminates the cereal grains with health-threatening mycotoxins, such as deoxynivalenol (DON), jeopardizing food and feed safety. Plant-based biopesticides, i.e. botanicals, have recently gained increased interest in crop protection as alternatives to synthetic chemical products. The main objective of this study was to test the control efficacy of botanicals based on white or Indian/Oriental mustard seed flours (Tillecur - Ti, Pure Yellow Mustard - PYM, Pure Oriental Mustard - POM, Oriental Mustard Bran - OMB) on F. graminearum infection and mycotoxin accumulation in wheat grain. Botanicals at 2% concentration showed a higher efficacy in inhibiting mycelium growth in vitro compared with a prothioconazole fungicide (F). In the growth chamber experiment under controlled conditions, the spraying agents reduced DON content in grain in the following order: F = Ti = PYM > POM > OMB. The antifungal activity of the botanicals may be attributed to their bioactive matrices containing isothiocyanates (ITCs) and phenolic acids. Allyl ITC was detected in POM and OMB at 8.38 and 4.48 mg g-1, while p-hydroxybenzyl ITC was found in Ti and PYM at 2.56 and 2.44 mg g-1, respectively. Considerable amounts of various phenolic acids were detected in all botanicals. Under field conditions, only the use of F significantly decreased F. graminearum infection and DON content in grain. An additional important finding of this study is that disease control was more difficult when infection was done with ascospores than conidia, which might have several potential implications considering that ascospores are more important in Fusarium head blight epidemics. Our results suggest that mustard-based botanicals are promising biopesticides for the control of Fusarium head blight in small-grain cereals, but for field applications, an appropriate formulation is necessary to stabilize and prolong the antifungal activity, especially against ascospores.

6.
Front Microbiol ; 10: 1627, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379780

RESUMEN

Clonostachys rosea is a biological control agent against Fusarium graminearum in small grain cereals and maize. Infections with F. graminearum do not only reduce the yield but, due to the production of mycotoxins, also affect the entire value chain of food and feed. In addition, production of other secondary metabolites such as hydrophobins, also known as gushing inducers, may cause quality challenges for the malting and brewing industry. Sustainable disease control strategies using C. rosea are treatment of infected residues of the previous crop, direct treatment of the actual cereal crop or post-harvest treatment during malting processes. Follow-up of growth and survival of biocontrol organisms during these different stages is of crucial importance. In the current study, we developed a quantitative real-time PCR detection method that amends the currently available culture-dependent techniques by using TaqMan chemistry with a highly specific primer and probe set, targeting the actin gene. We established a sensitive assay that detects the biological control agent down to 100 genome copies per reaction, with PCR efficiencies between 90 and 100%. The specificity of the assay was confirmed against a panel of 30 fungal and 3 bacterial species including 12 members of the Fusarium head blight complex and DNA of barley, maize and wheat. The DNA of C. rosea was detected in Fusarium-infected maize crop residues that were either treated in the laboratory or in the field with C. rosea and followed its DNA throughout the barley malting process to estimate its growth during grain germination. We used a standardized DNA extraction protocol and showed that C. rosea can be quantified in different sample matrices. This method will enable the monitoring of C. rosea during experiments studying the biological control of F. graminearum on cereal crop residues and on cereal grains and will thus contribute to the development of a new disease control strategy.

8.
J Agric Food Chem ; 56(3): 1029-34, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18197623

RESUMEN

Deoxynivalenol and zearalenone are among the most prevalent toxins produced by Fusarium spp. They have been investigated in food and feed products for decades but rarely in the environment. We therefore established solid-phase extraction and liquid chromatography-mass spectrometry (LC-MS) methods to quantify these mycotoxins at trace concentrations in aqueous natural samples. In a model emission study, we inoculated a winter wheat field with Fusarium graminearum and subsequently monitored deoxynivalenol and zearalenone in its drainage water. Before during and after harvest in June and July 2007, these toxins were emitted in concentrations from 23 ng/L to 4.9 microg/L for deoxynivalenol and from not detected to 35 ng/L for zearalenone. Simultaneously, in July and August 2007, deoxynivalenol was also detected in a number of Swiss rivers in concentrations up to 22 ng/L and zearalenone was present in several river samples below the method quantification limit. Other mycotoxins might be emitted from Fusarium-infected fields as well, because some of them are produced in similar amounts as deoxynivalenol and zearalenone and exhibit similar or even higher water solubility than deoxynivalenol. The ecotoxicological consequences of the presence of mycotoxins in surface waters remain to be elucidated.


Asunto(s)
Fusarium/metabolismo , Micotoxinas/análisis , Contaminantes del Agua/análisis , Cromatografía Liquida , Plaguicidas/análisis , Espectrometría de Masas en Tándem , Tricotecenos/análisis , Zearalenona/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-30499757

RESUMEN

To assess the in vitro activity of three phenolic acids (ferulic acid, p-hydroxybenzoic acid, vanillic acid) and two flavonols (quercetin, rutin) on mycelial growth and mycotoxin accumulation of Fusarium graminearum (FG), F. langsethiae (FL) and F. poae (FP), two different approaches were chosen. First, grains from oat varieties were inoculated with a suspension of three FL isolates to determine the influence of phenolic compounds on the accumulation of mycotoxins. The oat variety Zorro showed a tendency for lower accumulation of T-2/HT-2, diacetoxyscirpenol and neosolaniol. Second, a mycelium growth assay was conducted to follow FG, FL and FP growth on cereal based media supplemented with phenolic compounds. Increasing concentrations of ferulic acid substantially inhibited growth of FG and FL, while FP growth was reduced to 57%. In contrast, p-hydroxybenzoic acid, vanillic acid, quercetin, and rutin slightly stimulated mycelium growth. Results about mycotoxin production in cereal based media were less conclusive.


Asunto(s)
Grano Comestible/microbiología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Hidroxibenzoatos/farmacología , Micotoxinas/biosíntesis , Quercetina/farmacología , Rutina/farmacología , Fusarium/metabolismo
10.
Toxins (Basel) ; 10(1)2018 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-29361693

RESUMEN

Recent increases of Fusarium head blight (FHB) disease caused by infections with F. poae (FP) and F. langsethiae (FL) have been observed in oats. These pathogens are producers of nivalenol (NIV) and T-2/HT-2 toxin (T-2/HT-2), respectively, which are now considered major issues for cereal food and feed safety. To date, the impact of FP and FL on oat grains has not yet been identified, and little is known about oat resistance elements against these pathogens. In the present study, the impact of FL and FP on oat grains was assessed under different environmental conditions in field experiments with artificial inoculations. The severity of FP and FL infection on grains were compared across three field sites, and the resistance against NIV and T-2/HT2 accumulation was assessed for seven oat genotypes. Grain weight, ß-glucan content, and protein content were compared between infected and non-infected grains. Analyses of grain infection showed that FL was able to cause infection on the grain only in the field site with the highest relative humidity, whereas FP infected grains in all field sites. The FP infection of grains resulted in NIV contamination (between 30-500 µg/kg). The concentration of NIV in grains was not conditioned by environmental conditions. FL provoked an average contamination of grains with T-2/HT-2 (between 15-132 µg/kg). None of the genotypes was able to fully avoid toxin accumulation. The general resistance of oat grains against toxin accumulation was weak, and resistance against NIV accumulation was strongly impacted by the interaction between the genotype and the environment. Only the genotype with hull-less grains showed partial resistance to both NIV and T-2/HT-2 contamination. FP and FL infections could change the ß-glucan content in grains, depending on the genotypes and environmental conditions. FP and FL did not have a significant impact on the thousand kernel weight (TKW) and protein content. Hence, resistance against toxin accumulation remains the only indicator of FHB resistance in oat. Our results highlight the need for new oat genotypes with enhanced resistance against both NIV and T-2/HT-2 to ensure food and feed safety.


Asunto(s)
Avena/microbiología , Grano Comestible/microbiología , Fusarium , Micotoxinas/análisis , Avena/genética , Resistencia a la Enfermedad , Grano Comestible/química , Genotipo , Enfermedades de las Plantas/microbiología
11.
J Fungi (Basel) ; 3(4)2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29371580

RESUMEN

Potato late blight (PLB) caused by Phytophthora infestans (Pi) is the most harmful disease in potato production worldwide. In organic farming, copper is used despite its persistence in soil and toxicity to soil organisms. To replace copper, suspensions of powders from three promising botanicals, including bark of buckthorn (Frangula alnus, FA), roots of medicinal rhubarb (Rheum palmatum) and galls of the nutgall tree (Galla chinensis), were tested in multi-year field experiments. The current study shows for the first time that botanicals could replace copper under field conditions and best PLB reduction on leaves was achieved with FA, reaching a level close to that of 2 to 3 kg copper per hectare and year. Better results than with copper were achieved with Phosfik® (Ph), a phosphonate-based product. For both FA and Ph, the mode of action is based on induced resistance, for Ph also on direct fungicidal effects. A disadvantage of Ph is the accumulation of residues in potato tubers. Nevertheless, two to three applications with 2 to 3 L/ha of Ph would be feasible to not exceed a minimal risk level (MLR) of 20 mg/kg of phosphorous acid as proposed by the European Food Safety Authority. Due to an excellent environmental profile and a complex mode of action counteracting Pi resistance, phosphonate-based products would be most suitable for sustainable PLB management in integrated pest management (IPM) programmes.

12.
Front Plant Sci ; 8: 2019, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234337

RESUMEN

Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1-D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa) acts as a potent alternative host for Fusarium (OTU F.ave/tri) showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici. Thus, besides their beneficial traits, cover crops can also entail phytopathological risks by acting as alternative hosts for Fusarium and other noxious plant pathogens. The newly developed sequencing based methodology is a powerful diagnostic tool to trace Fusarium in combination with other fungi associated to different crop species.

13.
Toxins (Basel) ; 9(8)2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28792467

RESUMEN

To assess the occurrence of Fusarium toxins in wheat in Switzerland, an eight-year survey was conducted by analysing a total of 686 harvest samples from growers using LC-MS/MS. Between 2007 and 2010, 527 samples were obtained from 17 cantons. Between 2011 and 2014, 159 samples were collected from the canton Berne. The most frequent toxins detected were deoxynivalenol (DON), zearalenone (ZEA) and nivalenol (NIV). The overall mean DON content in all samples was 607 µg/kg, and 11% exceeded the European limit for unprocessed cereals for foodstuffs (1250 µg/kg). For ZEA (mean 39 µg/kg), 7% exceeded the respective limit (100 µg/kg), and the mean content of NIV (no limit established) was 15 µg/kg. Between the years, the ratio of mycotoxin-contaminated samples ranged between 52% and 98% for DON, 9% and 43% for ZEA and 0% and 49% for NIV. The yearly mean contents varied substantially between 68 and 1310 µg/kg for DON, 5 and 56 µg/kg for ZEA and 6 and 29 µg/kg for NIV. The geographic origin showed a significant effect on DON and ZEA contamination, but was inconsistent between the years. This study has shown that the majority of Swiss-produced wheat is, in terms of Fusarium toxins, fit for human consumption and feed purposes. Nevertheless, depending on the year, high toxin contents can be expected, an issue that growers, cereal collection centres and the food industry have to deal with to ensure food and feed safety.


Asunto(s)
Fusarium/química , Micotoxinas/análisis , Triticum/microbiología , Grano Comestible/química , Microbiología de Alimentos , Humanos , Encuestas y Cuestionarios , Suiza , Espectrometría de Masas en Tándem , Tricotecenos/análisis , Zearalenona/análisis
14.
Bioinformation ; 12(1): 1-3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27212835

RESUMEN

Data specific to 486 strains belonging to Fusarium graminearum and Fusarium culmorum were manually collected from Luxembourg field monitoring campaigns between the year 2007 ad 2013. It is of interest to store such data in a web-enabled advanced database to help in epidemiological studies. Hence, we describe the design and development of a Fusarium database added to the Luxembourg Microbial Culture Collection (LuxMCC™) web interface at the Luxembourg Institute of Science and Technology (LIST). The database has three main features: (1) filter search, (2) detailed viewer of isolate information, and (3) excel export function of the dataset. Information on fungal strains includes genetic chemotypes, data on selected agronomic factors and crop management issues with geographic localization. The database constitutes a rich source of data for addressing epidemiological issues related to these two species. It will be regularly updated with improved features for advancement and utility.

15.
Artículo en Inglés | MEDLINE | ID: mdl-27491813

RESUMEN

Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.


Asunto(s)
Producción de Cultivos/métodos , Contaminación de Alimentos/análisis , Fusarium/química , Fusarium/aislamiento & purificación , Hordeum/química , Micotoxinas/análisis , Cromatografía Liquida , Contaminación de Alimentos/prevención & control , Suiza , Espectrometría de Masas en Tándem
16.
Front Microbiol ; 7: 406, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092107

RESUMEN

Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum, and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F. culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.

17.
Toxins (Basel) ; 6(3): 830-49, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24577585

RESUMEN

Suspensions or solutions with 1% of Chinese galls (Galla chinensis, GC) or 1% of tannic acid (TA), inhibited germination of conidia or mycelium growth of Fusarium graminearum (FG) by 98%-100% or by 75%-80%, respectively, whereas dried bark from buckthorn (Frangula alnus, FA) showed no effect at this concentration. In climate chamber experiments where the wheat variety "Apogee" was artificially inoculated with FG and F. crookwellense (FCr) and treated with 5% suspensions of TA, GC and FA, the deoxynivalenol (DON) content in grains was reduced by 81%, 67% and 33%, respectively. In field experiments with two commercial wheat varieties and artificial or semi-natural inoculations, mean DON reductions of 66% (TA) and 58% (FA), respectively, were obtained. Antifungal toxicity can explain the high efficacies of TA and GC but not those of FA. The Fusarium head blight (FHB) and mycotoxin reducing effect of FA is probably due to elicitation of resistance in wheat plants. With semi-natural inoculation, a single FA application in the first half of the flowering period performed best. However, we assume that applications of FA at the end of ear emergence and a treatment, triggered by an infection period, with TA or GC during flowering, might perform better than synthetic fungicides.


Asunto(s)
Antifúngicos/farmacología , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Taninos/farmacología , Triticum/microbiología , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Micotoxinas/metabolismo , Corteza de la Planta , Enfermedades de las Plantas/microbiología , Tumores de Planta , Rhamnus , Rheum , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Tricotecenos/metabolismo , Triticum/crecimiento & desarrollo
18.
Mycotoxin Res ; 28(2): 135-47, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23606052

RESUMEN

Mycotoxins are known to affect the health of humans and husbandry animals. In contrast to wheat grains used for food and feed, whole wheat plants are rarely analysed for mycotoxins, although contaminated straw could additionally expose animals to these toxic compounds. Since the entire wheat plant may also act as source of mycotoxins emitted into the environment, an analytical method was developed, optimised and validated for the analysis of 28 different mycotoxins in above-ground material from whole wheat plants. The method comprises solid-liquid extraction and a clean-up step using a Varian Bond Elut Mycotoxin(®) cartridge, followed by liquid chromatography with electrospray ionisation and triple quadrupole mass spectrometry. Total method recoveries for 26 out of 28 compounds were between 69 and 122% and showed limits of detection from 1 to 26 ng/gdry weight (dw). The overall repeatability for all validated compounds was on average 7%, and their mean ion suppression 65%. Those rather high matrix effects made it necessary to use matrix-matched calibrations to quantify mycotoxins within whole wheat plants. The applicability of this method is illustrated with data from a winter wheat test field to examine the risks of environmental contamination by toxins following artificial inoculation separately with four different Fusarium species. The selected data originate from samples of a part of the field which was inoculated with Fusarium crookwellense. In the wheat samples, various trichothecenes (3-acetyl-deoxynivalenol, deoxynivalenol, diacetoxyscirpenol, fusarenone-X, nivalenol, HT-2 toxin, and T-2 toxin) as well as beauvericin and zearalenone were identified with concentrations ranging from 32 ng/gdw to 12 × 10(3) ng/gdw.


Asunto(s)
Cromatografía Liquida/métodos , Fusarium/crecimiento & desarrollo , Micotoxinas/análisis , Micotoxinas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Triticum/química , Triticum/microbiología , Depsipéptidos/análisis , Depsipéptidos/química , Grano Comestible/química , Fusarium/clasificación , Enfermedades de las Plantas/microbiología , Tricotecenos/análisis , Triticum/crecimiento & desarrollo , Zearalenona/análisis , Zearalenona/química
20.
Toxins (Basel) ; 3(8): 949-67, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22069750

RESUMEN

Maize is frequently infected by the Fusarium species producing mycotoxins. Numerous investigations have focused on grain maize, but little is known about the Fusarium species in the entire plant used for silage. Furthermore, mycotoxins persist during the ensiling process and thus endanger feed safety. In the current study, we analyzed 20 Swiss silage maize samples from growers' fields for the incidence of Fusarium species and mycotoxins. The species spectrum was analyzed morphologically and mycotoxins were measured by LC-MS/MS. A pre-harvest visual disease rating showed few disease symptoms. In contrast, the infection rate of two-thirds of the harvest samples ranged from 25 to 75% and twelve different Fusarium species were isolated. The prevailing species were F. sporotrichioides, F. verticillioides and F. graminearum. No infection specificity for certain plant parts was observed. The trichothecene deoxynivalenol (DON) was found in each sample (ranging from 780 to 2990 µg kg(-1)). Other toxins detected in descending order were zearalenone, further trichothecenes (nivalenol, HT-2 and T-2 toxin, acetylated DON) and fumonisins. A generalized linear regression model containing the three cropping factors harvest date, pre-precrop and seed treatment was established, to explain DON contamination of silage maize. Based on these findings, we suggest a European-wide survey on silage maize.


Asunto(s)
Contaminación de Alimentos/análisis , Fusarium/química , Micotoxinas/análisis , Ensilaje/microbiología , Zea mays/microbiología , Cromatografía Liquida , Fumonisinas/análisis , Toxina T-2/análogos & derivados , Toxina T-2/análisis , Espectrometría de Masas en Tándem , Tricotecenos/análisis , Zearalenona/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA