Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Microbiol ; 14(9): 1391-401, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22507744

RESUMEN

Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.


Asunto(s)
Centrómero/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Plasmodium falciparum/fisiología , Citocinesis , ADN Protozoario/química , ADN Protozoario/genética , Microscopía Fluorescente , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Análisis de Secuencia de ADN
2.
Methods Mol Biol ; 1953: 3-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30912012

RESUMEN

Pooled genetic screens are a powerful tool to identify targets for drug development as well as chemogenetic interactions. Various complementary methods for mutagenesis are available to generate highly complex cell populations, including mRNA knockdown, directed genome editing, as well as random genome mutagenesis. With the availability of a growing number of haploid mammalian cell lines, random mutagenesis is becoming increasingly powerful and represents an attractive alternative, e.g., to CRISPR-based screening. This chapter provides a step-by-step protocol for performing haploid gene trap screens.


Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Mutagénesis , Células Madre/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Citometría de Flujo/métodos , Pruebas Genéticas , Haploidia , Humanos , Ratones , Reacción en Cadena de la Polimerasa/métodos , Células Madre/efectos de los fármacos
3.
Cell Host Microbe ; 20(1): 60-71, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27374406

RESUMEN

Plasmodium falciparum parasites in the merozoite stage invade human erythrocytes and cause malaria. Invasion requires multiple interactions between merozoite ligands and erythrocyte receptors. P. falciparum reticulocyte binding homolog 5 (PfRh5) forms a complex with the PfRh5-interacting protein (PfRipr) and Cysteine-rich protective antigen (CyRPA) and binds erythrocytes via the host receptor basigin. However, the specific role that PfRipr and CyRPA play during invasion is unclear. Using P. falciparum lines conditionally expressing PfRipr and CyRPA, we show that loss of PfRipr or CyRPA function blocks growth due to the inability of merozoites to invade erythrocytes. Super-resolution microscopy revealed that PfRipr, CyRPA, and PfRh5 colocalize at the junction between merozoites and erythrocytes during invasion. PfRipr, CyRPA, and PfRipr/CyRPA/PfRh5-basigin complex is required for triggering the Ca(2+) release and establishing the tight junction. Together, these results establish that the PfRh5/PfRipr/CyRPA complex is essential in the sequential molecular events leading to parasite invasion of human erythrocytes.


Asunto(s)
Antígenos de Protozoos/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis , Eritrocitos/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Basigina/metabolismo , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Humanos , Microscopía , Modelos Biológicos , Unión Proteica , Multimerización de Proteína
4.
Cell Host Microbe ; 11(1): 7-18, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22264509

RESUMEN

A major virulence factor of the malaria parasite Plasmodium falciparum is erythrocyte membrane protein 1 (PfEMP1), a variant protein expressed on the infected erythrocyte surface. PfEMP1 is responsible for adherence of infected erythrocytes to the endothelium and plays an important role in pathogenesis. Mutually exclusive transcription and switched expression of one of 60 var genes encoding PfEMP1 in each parasite genome provides a mechanism for antigenic variation. We report the identification of a parasite protein, designated PfSET10, which localizes exclusively to the perinuclear active var gene expression site. PfSET10 is a histone 3 lysine 4 methyltransferase required to maintain the active var gene in a poised state during division for reactivation in daughter parasites, and as such is required for P. falciparum antigenic variation. PfSET10 likely maintains the transcriptionally permissive chromatin environment of the active var promoter and thus retains memory for heritable transmission of epigenetic information during parasite division.


Asunto(s)
División Celular , ADN Protozoario/metabolismo , Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/genética , Variación Antigénica , Epigénesis Genética , Proteínas Protozoarias/metabolismo
5.
PLoS One ; 7(2): e32188, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22389687

RESUMEN

Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Malaria/parasitología , Proteínas Protozoarias/metabolismo , Citoesqueleto de Actina/química , Animales , Humanos , Estadios del Ciclo de Vida/fisiología , Merozoítos/metabolismo , Ratones , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Estructura Secundaria de Proteína , Esporozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA