Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 503-505, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153216

RESUMEN

This volume of the Annual Review of Biochemistry contains three reviews on membrane channel proteins: the first by Szczot et al., titled The Form and Function of PIEZO2; the second by Ruprecht & Kunji, titled Structural Mechanism of Transport of Mitochondrial Carriers; and the third by McIlwain et al., titled Membrane Exporters of Fluoride Ion. These reviews provide nice illustrations of just how far evolution has been able to play with the basic helix-bundle architecture of integral membrane proteins to produce membrane channels and transporters of widely different functions.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Fluoruros/metabolismo
2.
Annu Rev Biochem ; 87: 101-103, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925266

RESUMEN

This article introduces the Protein Evolution and Design theme of the Annual Review of Biochemistry Volume 87.


Asunto(s)
Evolución Molecular Dirigida/métodos , Proteínas/genética , Proteínas/metabolismo , Animales , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Humanos , Redes y Vías Metabólicas/genética , Ingeniería de Proteínas/métodos , Proteínas/química
3.
Cell ; 156(1-2): 146-57, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439374

RESUMEN

Misfolded proteins are often cytotoxic, unless cellular systems prevent their accumulation. Data presented here uncover a mechanism by which defects in secretory proteins lead to a dramatic reduction in their mRNAs and protein expression. When mutant signal sequences fail to bind to the signal recognition particle (SRP) at the ribosome exit site, the nascent chain instead contacts Argonaute2 (Ago2), and the mutant mRNAs are specifically degraded. Severity of signal sequence mutations correlated with increased proximity of Ago2 to nascent chain and mRNA degradation. Ago2 knockdown inhibited degradation of the mutant mRNA, while overexpression of Ago2 or knockdown of SRP54 promoted degradation of secretory protein mRNA. The results reveal a previously unappreciated general mechanism of translational quality control, in which specific mRNA degradation preemptively regulates aberrant protein production (RAPP).


Asunto(s)
Biosíntesis de Proteínas , Pliegue de Proteína , Estabilidad del ARN , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/metabolismo , Perros , Células HeLa , Humanos , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
4.
Annu Rev Biochem ; 80: 157-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21675916

RESUMEN

This volume of the Annual Review of Biochemistry contains three reviews on current developments in membrane protein research: Grigoryan et al. "Transmembrane Communication: General Principles and Lessons from the Structure and Function of the M2 Proton Channel, K⁺ Channels, and Integrin Receptors," Hagan et al. "ß-Barrel Membrane Protein Assembly by the Bam Complex," and Dalbey et al. "Assembly of Bacterial Inner Membrane Proteins." In this short introduction, I discuss these reviews in the larger context of where the field of membrane protein biochemistry is heading.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/química , Pliegue de Proteína , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 119(35): e2205810119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994672

RESUMEN

In recent years, it has become clear that many homo- and heterodimeric cytoplasmic proteins in both prokaryotic and eukaryotic cells start to dimerize cotranslationally (i.e., while at least one of the two chains is still attached to the ribosome). Whether this is also possible for integral membrane proteins is, however, unknown. Here, we apply force profile analysis (FPA)-a method where a translational arrest peptide (AP) engineered into the polypeptide chain is used to detect force generated on the nascent chain during membrane insertion-to demonstrate cotranslational interactions between a fully membrane-inserted monomer and a nascent, ribosome-tethered monomer of the Escherichia coli inner membrane protein EmrE. Similar cotranslational interactions are also seen when the two monomers are fused into a single polypeptide. Further, we uncover an apparent intrachain interaction between E14 in transmembrane helix 1 (TMH1) and S64 in TMH3 that forms at a precise nascent chain length during cotranslational membrane insertion of an EmrE monomer. Like soluble proteins, inner membrane proteins thus appear to be able to both start to fold and start to dimerize during the cotranslational membrane insertion process.


Asunto(s)
Antiportadores , Proteínas de Escherichia coli , Escherichia coli , Antiportadores/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína
6.
Nucleic Acids Res ; 49(16): 9539-9547, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34403461

RESUMEN

In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.


Asunto(s)
Proteínas de Escherichia coli/ultraestructura , Factores de Terminación de Péptidos/ultraestructura , Biosíntesis de Proteínas , Ribosomas/ultraestructura , Codón de Terminación/genética , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Conformación Proteica , Conformación Proteica en Hélice alfa , Ribosomas/genética , Triptófano/genética
7.
Proc Natl Acad Sci U S A ; 117(25): 14119-14126, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513720

RESUMEN

Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.


Asunto(s)
Pliegue de Proteína , Espectrina/química , Escherichia coli , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Dominios Proteicos , Espectrina/genética , Espectrina/metabolismo
8.
Nature ; 536(7615): 219-23, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487212

RESUMEN

Signal recognition particle (SRP) is a universally conserved protein-RNA complex that mediates co-translational protein translocation and membrane insertion by targeting translating ribosomes to membrane translocons. The existence of parallel co- and post-translational transport pathways, however, raises the question of the cellular substrate pool of SRP and the molecular basis of substrate selection. Here we determine the binding sites of bacterial SRP within the nascent proteome of Escherichia coli at amino acid resolution, by sequencing messenger RNA footprints of ribosome-nascent-chain complexes associated with SRP. SRP, on the basis of its strong preference for hydrophobic transmembrane domains (TMDs), constitutes a compartment-specific targeting factor for nascent inner membrane proteins (IMPs) that efficiently excludes signal-sequence-containing precursors of periplasmic and outer membrane proteins. SRP associates with hydrophobic TMDs enriched in consecutive stretches of hydrophobic and bulky aromatic amino acids immediately on their emergence from the ribosomal exit tunnel. By contrast with current models, N-terminal TMDs are frequently skipped and TMDs internal to the polypeptide sequence are selectively recognized. Furthermore, SRP binds several TMDs in many multi-spanning membrane proteins, suggesting cycles of SRP-mediated membrane targeting. SRP-mediated targeting is not accompanied by a transient slowdown of translation and is not influenced by the ribosome-associated chaperone trigger factor (TF), which has a distinct substrate pool and acts at different stages during translation. Overall, our proteome-wide data set of SRP-binding sites reveals the underlying principles of pathway decisions for nascent chains in bacteria, with SRP acting as the dominant triaging factor, sufficient to separate IMPs from substrates of the SecA-SecB post-translational translocation and TF-assisted cytosolic protein folding pathways.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteoma/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Sitios de Unión , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/biosíntesis , Isomerasa de Peptidilprolil/metabolismo , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteoma/biosíntesis , Proteómica , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Especificidad por Sustrato
9.
Nat Chem Biol ; 15(10): 945-948, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501590

RESUMEN

Helical membrane proteins are typically assumed to attain stable transmembrane topologies immediately upon co-translational membrane insertion. Here we show that unassembled monomers of the small multidrug resistance (SMR) family exist in a dynamic equilibrium where the N-terminal transmembrane helix flips in and out of the membrane, with rates that depend on dimerization and the polypeptide sequence. Thus, membrane topology can display rapid dynamics in vivo and can be regulated by post-translational assembly.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/fisiología , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Antiportadores/genética , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Variación Genética , Proteínas de la Membrana/metabolismo , Plásmidos , Conformación Proteica
10.
Proc Natl Acad Sci U S A ; 115(40): E9280-E9287, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224455

RESUMEN

During the last five decades, studies of protein folding in dilute buffer solutions have produced a rich picture of this complex process. In the cell, however, proteins can start to fold while still attached to the ribosome (cotranslational folding) and it is not yet clear how the ribosome affects the folding of protein domains of different sizes, thermodynamic stabilities, and net charges. Here, by using arrest peptides as force sensors and on-ribosome pulse proteolysis, we provide a comprehensive picture of how the distance from the peptidyl transferase center in the ribosome at which proteins fold correlates with protein size. Moreover, an analysis of a large collection of mutants of the Escherichia coli ribosomal protein S6 shows that the force exerted on the nascent chain by protein folding varies linearly with the thermodynamic stability of the folded state, and that the ribosome environment disfavors folding of domains of high net-negative charge.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biosíntesis de Proteínas/fisiología , Pliegue de Proteína , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Dominios Proteicos , Estabilidad Proteica , Proteínas Ribosómicas/genética , Ribosomas/genética
11.
Proc Natl Acad Sci U S A ; 115(48): E11284-E11293, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30413621

RESUMEN

Proteins that fold cotranslationally may do so in a restricted configurational space, due to the volume occupied by the ribosome. How does this environment, coupled with the close proximity of the ribosome, affect the folding pathway of a protein? Previous studies have shown that the cotranslational folding process for many proteins, including small, single domains, is directly affected by the ribosome. Here, we investigate the cotranslational folding of an all-ß Ig domain, titin I27. Using an arrest peptide-based assay and structural studies by cryo-EM, we show that I27 folds in the mouth of the ribosome exit tunnel. Simulations that use a kinetic model for the force dependence of escape from arrest accurately predict the fraction of folded protein as a function of length. We used these simulations to probe the folding pathway on and off the ribosome. Our simulations-which also reproduce experiments on mutant forms of I27-show that I27 folds, while still sequestered in the mouth of the ribosome exit tunnel, by essentially the same pathway as free I27, with only subtle shifts of critical contacts from the C to the N terminus.


Asunto(s)
Conectina/química , Ribosomas/metabolismo , Conectina/genética , Conectina/metabolismo , Humanos , Cinética , Proteínas de Microfilamentos , Modelos Moleculares , Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas/química , Ribosomas/genética
12.
J Biol Chem ; 294(12): 4538-4545, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30696770

RESUMEN

Astrotactin 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking, and synaptic plasticity in the brain as well as in planar polarity pathways in the skin. Here we used glycosylation mapping and protease protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes and found that Astn2 has a cleaved N-terminal signal peptide, an N-terminal domain located in the lumen of the rough microsomal membranes (topologically equivalent to the extracellular surface in cells), two transmembrane helices, and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of signal peptide cleavage in Astn1. Both Astn1 and Astn2 mature through endoproteolytic cleavage in the second transmembrane helix; importantly, we identified the endoprotease responsible for the maturation of Astn1 and Astn2 as the endoplasmic reticulum signal peptidase. Differences in the degree of Astn1 and Astn2 maturation possibly contribute to the higher levels of the C-terminal domain of Astn1 detected on neuronal membranes of the central nervous system. These differences may also explain the distinct cellular functions of Astn1 and Astn2, such as in membrane adhesion, receptor trafficking, and planar polarity signaling.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Biocatálisis , Retículo Endoplásmico/metabolismo , Glicoproteínas/química , Glicosilación , Membranas Intracelulares/metabolismo , Ratones , Microsomas/metabolismo , Proteínas del Tejido Nervioso/química , Proteolisis
13.
Nature ; 574(7780): 634, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31664210
14.
Mol Cell ; 45(4): 529-40, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22281052

RESUMEN

α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (N(cyt)-C(lum) or N(lum)-C(cyt)) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the "missing hydrophobicity" in polytopic membrane proteins.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Transportadores de Anión Orgánico Sodio-Dependiente/química , Serina Endopeptidasas/química , Simportadores/química , Animales , Células Cultivadas , Perros , Retículo Endoplásmico/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Microsomas/química , Estructura Secundaria de Proteína
15.
Proc Natl Acad Sci U S A ; 114(30): 7987-7992, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698365

RESUMEN

The topologies of α-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Escherichia coli , Multimerización de Proteína
16.
J Biol Chem ; 293(10): 3470-3476, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523692

RESUMEN

My scientific career has taken me from chemistry, via theoretical physics and bioinformatics, to molecular biology and even structural biology. Along the way, serendipity led me to work on problems such as the identification of signal peptides that direct protein trafficking, membrane protein biogenesis, and cotranslational protein folding. I've had some great collaborations that came about because of a stray conversation or from following up on an interesting paper. And I've had the good fortune to be asked to sit on the Nobel Committee for Chemistry, where I am constantly reminded of the amazing pace and often intricate history of scientific discovery. Could I have planned this? No way! I just went with the flow ….


Asunto(s)
Ingeniería Química/historia , Biología Computacional/historia , Proteínas de la Membrana/historia , Modelos Moleculares , Biología Molecular/historia , Física/historia , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ciudad de Nueva York , Pliegue de Proteína , Señales de Clasificación de Proteína , Transducción de Señal , Suecia
18.
Proc Natl Acad Sci U S A ; 113(38): 10559-64, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601675

RESUMEN

Cotranslational translocon-mediated insertion of membrane proteins into the endoplasmic reticulum is a key process in membrane protein biogenesis. Although the mechanism is understood in outline, quantitative data on the energetics of the process is scarce. Here, we have measured the effect on membrane integration efficiency of nonproteinogenic analogs of the positively charged amino acids arginine and lysine incorporated into model transmembrane segments. We provide estimates of the influence on the apparent free energy of membrane integration (ΔGapp) of "snorkeling" of charged amino acids toward the lipid-water interface, and of charge neutralization. We further determine the effect of fluorine atoms and backbone hydrogen bonds (H-bonds) on ΔGapp These results help establish a quantitative basis for our understanding of membrane protein assembly in eukaryotic cells.


Asunto(s)
Aminoácidos/química , Retículo Endoplásmico/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Aminoácidos/genética , Retículo Endoplásmico/química , Entropía , Escherichia coli/enzimología , Escherichia coli/genética , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Estructura Secundaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Termodinámica , Agua/química
19.
Biophys J ; 115(10): 1885-1894, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30366631

RESUMEN

During ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. This study utilizes a combination of arrest peptide experiments and coarse-grained molecular dynamics to measure and elucidate the molecular origins of forces that are exerted on NCs during cotranslational membrane insertion and translocation via the Sec translocon. The approach enables deconvolution of force contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. In particular, we show that forces due to NC-lipid interactions provide a readout of conformational changes in the Sec translocon, demonstrating that lateral gate opening only occurs when a sufficiently hydrophobic segment of NC residues reaches the translocon. The combination of experiment and theory introduced here provides a detailed picture of the molecular interactions and conformational changes during ribosomal translation that govern protein biogenesis.


Asunto(s)
Membrana Celular/metabolismo , Péptidos/química , Péptidos/metabolismo , Canales de Translocación SEC/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas
20.
Mol Biol Evol ; 34(8): 2041-2056, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28505373

RESUMEN

Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity.


Asunto(s)
Brachypodium/genética , Transcinamato 4-Monooxigenasa/genética , Secuencia de Aminoácidos , Brachypodium/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Retículo Endoplásmico/metabolismo , Evolución Molecular , Duplicación de Gen/genética , Genes Duplicados/genética , Lignina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Filogenia , Dominios Proteicos/genética , Semillas/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA