Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 30(1): 63-78, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518531

RESUMEN

BACKGROUND: Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. METHODS: We used mouse models, including DNA methyltransferase (Dnmt1, Dnmt3a, and Dnmt3b) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. RESULTS: We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1-deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. CONCLUSIONS: These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Riñón/embriología , Organogénesis/genética , Células Madre/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Nefronas/citología , Nefronas/fisiología , Ratas , Ratas Wistar , Sensibilidad y Especificidad , Células Madre/fisiología , ADN Metiltransferasa 3B
2.
Mol Genet Genomic Med ; 9(3): e1611, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33534181

RESUMEN

BACKGROUND: Netherton syndrome (NS) is a genodermatosis caused by loss-of-function mutations in SPINK5, resulting in aberrant LEKTI expression. METHOD: Next-generation sequencing of SPINK5 (NM_001127698.1) was carried out and functional studies were performed by immunofluorescence microscopy of a lesional skin biopsy using anti-LEKTI antibodies. RESULTS: We describe a novel SPINK5 likely pathogenic donor splice site variant (NM_001127698.1:c.2015+5G>A) in a patient with NS and confirm its functional significance by demonstrating complete loss of LEKTI expression in lesional skin by immunofluorescence analysis. CONCLUSION: The 2015+5G>A is a novel, likely pathogenic variant in NS. Herein we review and assimilate documented SPINK5 pathogenic variants and discuss possible genotype-phenotype associations in NS.


Asunto(s)
Síndrome de Netherton/genética , Inhibidor de Serinpeptidasas Tipo Kazal-5/genética , Preescolar , Humanos , Masculino , Mutación , Síndrome de Netherton/patología , Fenotipo , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA