Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(38)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37285859

RESUMEN

In this work, we investigate the intrinsic as well as modulated optical properties of the AB-stacking bilayer armchair graphene ribbons in the absence and presence of external electric fields. Single-layer ribbons are also considered for comparison. By using a tight-binding model in combination with the gradient approximation, we examine the energy bands, the density of states and the absorption spectra of the studied structures. Our results demonstrate that when external fields are not present, the low-frequency optical absorption spectra display numerous peaks and they vanish at the zero point. In addition, the number, the position, and the intensity of the absorption peaks are strongly associated with the ribbon width. With the wider ribbon width, more absorption peaks are present and a lower threshold absorption frequency is observed. Interestingly, in the presence of electric fields, bilayer armchair ribbons exhibit a lower threshold absorption frequency, more absorption peaks, and weaker spectral intensity. When increasing the strength of the electric field, the prominent peaks of the edge-dependent selection rules are lowered, and the sub-peaks satisfying the extra selection rules come to exist. The obtained results certainly provide a more comprehensive understanding of the correlation between the energy band transition and the optical absorption, in both single-layer and bilayer graphene armchair ribbons, and could provide new insights into developments of optoelectronic device applications based on graphene bilayer ribbons.

2.
Nat Commun ; 7: 10852, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927313

RESUMEN

Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa2Cu3O(7-x) (YBCO) thin films grown epitaxially on La0.7Ca0.3MnO3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, with long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.


Asunto(s)
Técnicas Electroquímicas , Elementos de la Serie de los Lantanoides/química , Cobre/química , Conductividad Eléctrica , Fenómenos Magnéticos , Difracción de Rayos X , Itrio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA