Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(6): 1153-1166, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630719

RESUMEN

A plastic nervous system requires the ability not only to acquire and store but also to forget. Here, we report that musashi (msi-1) is necessary for time-dependent memory loss in C. elegans. Tissue-specific rescue demonstrates that MSI-1 function is necessary in the AVA interneuron. Using RNA-binding protein immunoprecipitation (IP), we found that MSI-1 binds to mRNAs of three subunits of the Arp2/3 actin branching regulator complex in vivo and downregulates ARX-1, ARX-2, and ARX-3 translation upon associative learning. The role of msi-1 in forgetting is also reflected by the persistence of learning-induced GLR-1 synaptic size increase in msi-1 mutants. We demonstrate that memory length is regulated cooperatively through the activation of adducin (add-1) and by the inhibitory effect of msi-1. Thus, a GLR-1/MSI-1/Arp2/3 pathway induces forgetting and represents a novel mechanism of memory decay by linking translational control to the structure of the actin cytoskeleton in neurons.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interneuronas/metabolismo , Memoria , Proteínas del Tejido Nervioso/metabolismo , ARN de Helminto/metabolismo , Proteínas de Unión al ARN/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Sinapsis
2.
Proc Natl Acad Sci U S A ; 117(3): 1524-1532, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31919282

RESUMEN

Loss of the tumor suppressor tuberous sclerosis complex 1 (Tsc1) in the liver promotes gluconeogenesis and glucose intolerance. We asked whether this could be attributed to aberrant expression of small RNAs. We performed small-RNA sequencing on liver of Tsc1-knockout mice, and found that miRNAs of the delta-like homolog 1 (Dlk1)-deiodinase iodothyronine type III (Dio3) locus are up-regulated in an mTORC1-dependent manner. Sustained mTORC1 signaling during development prevented CpG methylation and silencing of the Dlk1-Dio3 locus, thereby increasing miRNA transcription. Deletion of miRNAs encoded by the Dlk1-Dio3 locus reduced gluconeogenesis, glucose intolerance, and fasting blood glucose levels. Thus, miRNAs contribute to the metabolic effects observed upon loss of TSC1 and hyperactivation of mTORC1 in the liver. Furthermore, we show that miRNA is a downstream effector of hyperactive mTORC1 signaling.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Gluconeogénesis/fisiología , Yoduro Peroxidasa/metabolismo , MicroARNs/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Regulación hacia Arriba , Animales , Proteínas de Unión al Calcio/genética , Sitios Genéticos , Impresión Genómica , Gluconeogénesis/genética , Yoduro Peroxidasa/genética , Hígado/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , Análisis de Secuencia , Transducción de Señal , Transcriptoma , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
3.
Proc Natl Acad Sci U S A ; 117(35): 21667-21672, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817534

RESUMEN

Extensive pharmacologic, genetic, and epigenetic research has linked the glucocorticoid receptor (GR) to memory processes, and to risk and symptoms of posttraumatic stress disorder (PTSD). In the present study we investigated the epigenetic pattern of 12 genes involved in the regulation of GR signaling in two African populations of heavily traumatized individuals: Survivors of the rebel war in northern Uganda (n = 463) and survivors of the Rwandan genocide (n = 350). The strongest link between regional methylation and PTSD risk and symptoms was observed for NTRK2, which encodes the transmembrane receptor tropomyosin-related kinase B, binds the brain-derived neurotrophic factor, and has been shown to play an important role in memory formation. NTRK2 methylation was not related to trauma load, suggesting that methylation differences preexisted the trauma. Because NTRK2 methylation differences were predominantly associated with memory-related PTSD symptoms, and because they seem to precede traumatic events, we next investigated the relationship between NTRK2 methylation and memory in a sample of nontraumatized individuals (n = 568). We found that NTRK2 methylation was negatively associated with recognition memory performance. Furthermore, fMRI analyses revealed NTRK2 methylation-dependent differences in brain network activity related to recognition memory. The present study demonstrates that NTRK2 is epigenetically linked to memory functions in nontraumatized subjects and to PTSD risk and symptoms in traumatized populations.


Asunto(s)
Glicoproteínas de Membrana/genética , Receptor trkB/genética , Trastornos por Estrés Postraumático/genética , Adulto , Anciano , Encéfalo/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Femenino , Glucocorticoides/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Memoria/fisiología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Receptor trkB/metabolismo , Receptores de Glucocorticoides/metabolismo , Factores de Riesgo , Rwanda/epidemiología , Trastornos por Estrés Postraumático/metabolismo , Sobrevivientes , Uganda/epidemiología
4.
Proc Natl Acad Sci U S A ; 114(34): 9176-9181, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28790188

RESUMEN

Emotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock-context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkmζ, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory.


Asunto(s)
Complejo Nuclear Basolateral/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Norepinefrina/farmacología , Agonistas alfa-Adrenérgicos/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Metilación de ADN/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Proteínas de la Matriz Extracelular/genética , Agonistas de Receptores de GABA-A/farmacología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Memoria a Largo Plazo/fisiología , Muscimol/farmacología , Proteínas del Tejido Nervioso/genética , Norepinefrina/administración & dosificación , Ratas Sprague-Dawley , Proteína Reelina , Serina Endopeptidasas/genética , Transcriptoma/efectos de los fármacos
5.
J Neurosci ; 37(28): 6661-6672, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28592692

RESUMEN

The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets.SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica/fisiología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/genética , Proteoma/metabolismo , Animales , Aprendizaje por Asociación/fisiología , Proteínas de Caenorhabditis elegans/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Genoma/genética , Proteoma/genética
6.
EMBO J ; 31(6): 1453-66, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22307086

RESUMEN

Identifying molecular mechanisms that underlie learning and memory is one of the major challenges in neuroscience. Taken the advantages of the nematode Caenorhabditis elegans, we investigated α-adducin (add-1) in aversive olfactory associative learning and memory. Loss of add-1 function selectively impaired short- and long-term memory without causing acquisition, sensory, or motor deficits. We showed that α-adducin is required for consolidation of synaptic plasticity, for sustained synaptic increase of AMPA-type glutamate receptor (GLR-1) content and altered GLR-1 turnover dynamics. ADD-1, in a splice-form- and tissue-specific manner, controlled the storage of memories presumably through actin-capping activity. In support of the C. elegans results, genetic variability of the human ADD1 gene was significantly associated with episodic memory performance in healthy young subjects. Finally, human ADD1 expression in nematodes restored loss of C. elegans add-1 gene function. Taken together, our findings support a role for α-adducin in memory from nematodes to humans. Studying the molecular and genetic underpinnings of memory across distinct species may be helpful in the development of novel strategies to treat memory-related diseases.


Asunto(s)
Memoria/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Actinas/metabolismo , Adulto , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Femenino , Variación Genética , Humanos , Aprendizaje/fisiología , Masculino , Neuronas/metabolismo , Receptores AMPA/metabolismo , Adulto Joven
7.
J Neurosci ; 34(31): 10274-84, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080589

RESUMEN

Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to regulate emotional memory processes, particularly in men, epigenetic modifications of NR3C1 might affect the strength of traumatic memories. Here, we found that increased DNA methylation at the NGFI-A (nerve growth factor-induced protein A) binding site of the NR3C1 promoter was associated with less intrusive memory of the traumatic event and reduced PTSD risk in male, but not female survivors of the Rwandan genocide. NR3C1 methylation was not significantly related to hyperarousal or avoidance symptoms. We further investigated the relationship between NR3C1 methylation and memory functions in a neuroimaging study in healthy subjects. Increased NR3C1 methylation-which was associated with lower NR3C1 expression-was related to reduced picture recognition in male, but not female subjects. Furthermore, we found methylation-dependent differences in recognition memory-related brain activity in men. Together, these findings indicate that an epigenetic modification of the glucocorticoid receptor gene promoter is linked to interindividual and gender-specific differences in memory functions and PTSD risk.


Asunto(s)
Epigénesis Genética/genética , Genocidio/psicología , Memoria , Receptores de Glucocorticoides/genética , Trastornos por Estrés Postraumático , Sobrevivientes/psicología , Adolescente , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/patología , Metilación de ADN , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Pruebas Neuropsicológicas , Oxígeno/sangre , Regiones Promotoras Genéticas/genética , Escalas de Valoración Psiquiátrica , Riesgo , Rwanda , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/patología , Trastornos por Estrés Postraumático/psicología , Suiza , Adulto Joven
8.
Kidney Int ; 88(6): 1261-1273, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26422507

RESUMEN

The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 h, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared with those of wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared with those of vehicle control. In the light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis, and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target.

9.
Proc Natl Acad Sci U S A ; 109(22): 8746-51, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586106

RESUMEN

Strong memory of a traumatic event is thought to contribute to the development and symptoms of posttraumatic stress disorder (PTSD). Therefore, a genetic predisposition to build strong memories could lead to increased risk for PTSD after a traumatic event. Here we show that genetic variability of the gene encoding PKCα (PRKCA) was associated with memory capacity--including aversive memory--in nontraumatized subjects of European descent. This finding was replicated in an independent sample of nontraumatized subjects, who additionally underwent functional magnetic resonance imaging (fMRI). fMRI analysis revealed PRKCA genotype-dependent brain activation differences during successful encoding of aversive information. Further, the identified genetic variant was also related to traumatic memory and to the risk for PTSD in heavily traumatized survivors of the Rwandan genocide. Our results indicate a role for PKCα in memory and suggest a genetic link between memory and the risk for PTSD.


Asunto(s)
Memoria/fisiología , Polimorfismo de Nucleótido Simple , Proteína Quinasa C-alfa/genética , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/fisiopatología , Adolescente , Adulto , Anciano , Encéfalo/patología , Encéfalo/fisiopatología , Femenino , Genotipo , Homicidio/psicología , Humanos , Imagen por Resonancia Magnética , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Factores de Riesgo , Rwanda/etnología , Trastornos por Estrés Postraumático/psicología , Sobrevivientes/psicología , Uganda , Adulto Joven
10.
Transl Psychiatry ; 14(1): 32, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238325

RESUMEN

Soldiers may be exposed to traumatic stress during combat deployment and thus are at risk for developing posttraumatic stress disorder (PTSD). Genetic and epigenetic evidence suggests that PTSD is linked to forming stress-related memories. In the current study, we investigated post-deployment associations of PTSD symptoms with differential DNA methylation in a sample of Burundian soldiers returning from the African Union Mission in Somalia's war zone. We used a matched longitudinal study design to explore epigenetic changes associated with PTSD symptoms in N = 191 participants. PTSD symptoms and saliva samples were collected at 1-3 (t1) and 9-14 months (t2) after the return of the soldiers to their home base. Individuals with either worsening or improving PTSD symptoms were matched for age, stressful, traumatic and self-perpetrated events prior to the post-assessment, traumatic and violent experiences between the post- and the follow-up assessment, and violence experienced during childhood. A mixed model analysis was conducted to identify top nominally significantly differentially methylated genes, which were then used to perform a gene enrichment analysis. The linoleic acid metabolism pathway was significantly associated with post-deployment PTSD symptoms, after accounting for multiple comparisons. Linoleic acid has been linked to memory and immune related processes in previous research. Our findings suggest that differential methylation of linoleic acid pathway genes is associated with PTSD and thus may merit closer inspection as a possible mediator of resilience.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/diagnóstico , Ácido Linoleico , Estudios Longitudinales , Metilación de ADN
11.
Transl Psychiatry ; 13(1): 14, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658116

RESUMEN

Epigenetic processes allow plasticity in gene regulation in response to significant environmental events. Accumulating evidence suggests that effective psychotherapy is accompanied by epigenetic changes, rendering DNA methylation a potential biomarker of therapy success. Due to the central role of glucocorticoid dynamics in stress regulation and the alteration of aversive memories, glucocorticoid receptors are likely involved in the molecular processes that are required to successfully treat Posttraumatic Stress Disorder (PTSD). This study aimed to investigate the relationship between methylation at the glucocorticoid receptor gene (NR3C1) and PTSD treatment success of evidence-based psychotherapy. A sample of N = 153 conflict survivors from Northern Uganda (98 females and 55 males) with PTSD were treated with Narrative Exposure Therapy (NET). Diagnostic interviews and saliva sampling took place at pretreatment and 4 and 10 months after treatment completion. We investigated potential associations between PTSD symptom development and methylation changes at 38 CpG sites spanning NR3C1 over the three times of measurement using the repeated measures correlation. After accounting for multiple comparisons, DNA methylation at CpG site cg25535999 remained negatively associated with PTSD symptoms. These results were followed up by mixed models as well as structural equation modelling. These analyses revealed that treatment responders had a significant cg25535999 methylation increase after treatment with NET. Furthermore, lower methylation at cg25535999 pretreatment predicted a higher symptom improvement. Our results suggest different epigenetic profile dynamics at NR3C1 cg25535999 in therapy responders compared to non-responders and underscore the central role of glucocorticoid signaling in trauma-focused therapy.


Asunto(s)
Terapia Implosiva , Trastornos por Estrés Postraumático , Masculino , Femenino , Humanos , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/terapia , Glucocorticoides/uso terapéutico , Epigénesis Genética , Metilación de ADN , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
12.
Sci Rep ; 11(1): 18493, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531495

RESUMEN

The aftermath of traumatization lives on in the neural and epigenetic traces creating a momentum of affliction in the psychological and social realm. Can psychotherapy reorganise these memories through changes in DNA methylation signatures? Using a randomised controlled parallel group design, we examined methylome-wide changes in saliva samples of 84 female former child soldiers from Eastern DR Congo before and six months after Narrative Exposure Therapy. Treatment predicted differentially methylated positions (DMPs) related to ALCAM, RIPOR2, AFAP1 and MOCOS. In addition, treatment associations overlapped at gene level with baseline clinical and social outcomes. Treatment related DMPs are involved in memory formation-the key agent in trauma focused treatments-and enriched for molecular pathways commonly affected by trauma related disorders. Results were partially replicated in an independent sample of 53 female former child soldiers from Northern Uganda. Our results suggest a molecular impact of psychological treatment in women with war-related childhood trauma.Trial registration: Addressing Heightened Levels of Aggression in Traumatized Offenders With Psychotherapeutic Means (ClinicalTrials.gov Identifier: NCT02992561, 14/12/2016).


Asunto(s)
Experiencias Adversas de la Infancia , Metilación de ADN , Terapia Implosiva , Trastornos por Estrés Postraumático/genética , Adolescente , Adulto , Agresión , Antígenos CD/genética , Conflictos Armados , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Niño , República Democrática del Congo , Femenino , Proteínas Fetales/genética , Humanos , Proteínas de Microfilamentos/genética , Trastornos por Estrés Postraumático/terapia , Sulfurtransferasas/genética
13.
Transl Psychiatry ; 10(1): 217, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632143

RESUMEN

The neural cell adhesion molecule 1 (NCAM-1) has been implicated in several brain-related biological processes, including neuronal migration, axonal branching, fasciculation, and synaptogenesis, with a pivotal role in synaptic plasticity. Here, we investigated the evolutionary conserved role of NCAM-1 in learning and memory. First, we investigated sustained changes in ncam-1 expression following aversive olfactory conditioning in C. elegans using molecular genetic methods. Furthermore, we examined the link between epigenetic signatures of the NCAM1 gene and memory in two human samples of healthy individuals (N = 568 and N = 319) and in two samples of traumatized individuals (N = 350 and N = 463). We found that olfactory conditioning in C. elegans induced ncam-1 expression and that loss of ncam-1 function selectively impaired associative long-term memory, without causing acquisition, sensory, or short-term memory deficits. Reintroduction of the C. elegans or human NCAM1 fully rescued memory impairment, suggesting a conserved role of NCAM1 for memory. In parallel, DNA methylation of the NCAM1 promoter in two independent healthy Swiss cohorts was associated with memory performance. In two independent Sub-Saharan populations of conflict zone survivors who had faced severe trauma, DNA methylation at an alternative promoter of the NCAM1 gene was associated with traumatic memories. Our results support a role of NCAM1 in associative memory in nematodes and humans, and might, ultimately, be helpful in elucidating diagnostic markers or suggest novel therapy targets for memory-related disorders, like PTSD.


Asunto(s)
Caenorhabditis elegans , Molécula L1 de Adhesión de Célula Nerviosa , Animales , Antígeno CD56 , Condicionamiento Psicológico , Humanos , Aprendizaje , Moléculas de Adhesión de Célula Nerviosa/genética , Plasticidad Neuronal , Ácidos Siálicos
14.
Psychophysiology ; 57(1): e13288, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30328613

RESUMEN

The risk of developing posttraumatic stress disorder (PTSD) increases with the number of traumatic event types experienced (trauma load) in interaction with other psychobiological risk factors. The NOTCH (neurogenic locus notch homolog proteins) signaling pathway, consisting of four different trans-membrane receptor proteins (NOTCH1-4), constitutes an evolutionarily well-conserved intercellular communication pathway (involved, e.g., in cell-cell interaction, inflammatory signaling, and learning processes). Its association with fear memory consolidation makes it an interesting candidate for PTSD research. We tested for significant associations of common genetic variants of NOTCH1-4 (investigated by microarray) and genomic methylation of saliva-derived DNA with lifetime PTSD risk in independent cohorts from Northern Uganda (N1 = 924) and Rwanda (N2 = 371), and investigated whether NOTCH-related gene sets were enriched for associations with lifetime PTSD risk. We found associations of lifetime PTSD risk with single nucleotide polymorphism (SNP) rs2074621 (NOTCH3) (puncorrected = 0.04) in both cohorts, and with methylation of CpG site cg17519949 (NOTCH3) (puncorrected = 0.05) in Rwandans. Yet, none of the (epi-)genetic associations survived multiple testing correction. Gene set enrichment analyses revealed enrichment for associations of two NOTCH pathways with lifetime PTSD risk in Ugandans: NOTCH binding (pcorrected = 0.003) and NOTCH receptor processing (pcorrected = 0.01). The environmental factor trauma load was significant in all analyses (all p < 0.001). Our integrated methodological approach suggests NOTCH as a possible mediator of PTSD risk after trauma. The results require replication, and the precise underlying pathophysiological mechanisms should be illuminated in future studies.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Proteínas del Tejido Nervioso/genética , Trauma Psicológico/complicaciones , Transducción de Señal/genética , Trastornos por Estrés Postraumático/etiología , Trastornos por Estrés Postraumático/genética , Adulto , Estudios de Cohortes , Islas de CpG , Humanos , Polimorfismo de Nucleótido Simple , Receptor Notch3/genética , Riesgo , Rwanda , Uganda
15.
Front Genet ; 10: 269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040859

RESUMEN

Stress during pregnancy widely associates with epigenetic changes and psychiatric problems during childhood. Animal studies, however, show that under specific postnatal conditions prenatal stress may have other, less detrimental consequences for the offspring. Here, we studied mental health and epigenome-wide DNA methylation in saliva following intimate partner violence (IPV) during pregnancy in São Gonçalo, a Brazilian city with high levels of violence. Not surprisingly, mothers exposed to pregnancy IPV expressed elevated depression, PTSD and anxiety symptoms. Children had similar psychiatric problems when they experienced maternal IPV after being born. More surprisingly, when maternal IPV occurred both during (prenatal) and after pregnancy these problems were absent. Following prenatal IPV, genomic sites in genes encoding the glucocorticoid receptor (NR3C1) and its repressor FKBP51 (FKBP5) were among the most differentially methylated and indicated an enhanced ability to terminate hormonal stress responses in prenatally stressed children. These children also showed more DNA methylation in heterochromatin-like regions, which previously has been associated with stress/disease resilience. A similar relationship was seen in prenatally stressed middle-eastern refugees of the same age as the São Gonçalo children but exposed to postnatal war-related violence. While our study is limited in location and sample size, it provides novel insights on how prenatal stress may epigenetically shape resilience in humans, possibly through interactions with the postnatal environment. This translates animal findings and emphasizes the importance to account for population differences when studying how early life gene-environment interactions affects mental health.

16.
Transl Psychiatry ; 8(1): 251, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467376

RESUMEN

The probability to develop posttraumatic stress disorder (PTSD), characterized by vivid, intrusive emotional memories of the encountered traumatic events, depends - among other factors - on the number of previous traumatic experiences (traumatic load) and individual genetic vulnerability. So far, our knowledge regarding the biological underpinnings of PTSD is relatively sparse. Genome-wide association studies (GWAS) followed by independent replication might help to discover novel, so far unknown biological mechanisms associated with the development of traumatic memories. Here, a GWAS was conducted in N = 924 Northern Ugandan rebel war survivors and identified seven suggestively significant single nucleotide polymorphisms (SNPs; p ≤ 1 × 10-5) for lifetime PTSD risk. Of these seven SNPs, the association of rs3852144 on chromosome 5 was replicated in an independent sample of Rwandan genocide survivors (N = 370, p < .01). While PTSD risk increased with accumulating traumatic experiences, the vulnerability was reduced in carriers of the minor G-allele in an additive manner. Correspondingly, memory for aversive pictures decreased with higher number of the minor G-allele in a sample of N = 2698 healthy Swiss individuals. Finally, investigations on N = 90 PTSD patients treated with Narrative Exposure Therapy indicated an additive effect of genotype on PTSD symptom change from pre-treatment to four months after treatment, but not between pre-treatment and the 10-months follow-up. In conclusion, emotional memory formation seems to decline with increasing number of rs3852144 G-alleles, rendering individuals more resilient to PTSD development. However, the impact on therapy outcome remains preliminary and further research is needed to determine how this intronic marker may affect memory processes in detail.


Asunto(s)
Emociones/fisiología , Genocidio , Estudio de Asociación del Genoma Completo , Terapia Implosiva/métodos , Memoria/fisiología , Evaluación de Resultado en la Atención de Salud , Trastornos por Estrés Postraumático , Sobrevivientes , Exposición a la Guerra , Adulto , Femenino , Estudios de Seguimiento , Humanos , Masculino , Terapia Narrativa/métodos , Polimorfismo de Nucleótido Simple , Resiliencia Psicológica , Riesgo , Rwanda , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/terapia , Suiza , Uganda , Adulto Joven
17.
Transl Psychiatry ; 8(1): 31, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29382824

RESUMEN

The large biological distance between genetic risk loci and their mechanistic consequences in the tissue of interest limits the ability to establish functionality of susceptibility variants for genetically complex traits. Such a biological gap may be reduced through the systematic study of molecular mediators of genomic action, such as epigenetic modification. Here, we report the identification of robust genetic estimators of whole-blood CpG methylation, which can serve as intermediate molecular traits amenable to association testing with other genetically complex traits. We describe the relationship between these estimators and gene expression, demonstrate their genome-wide applicability to association testing even in the absence of individual genotypic data, and show that these estimators powerfully identify methylation-related genomic loci associated with polygenic traits and common diseases, such as schizophrenia. The use of genetic estimators for blood DNA methylation, which are made publically available, can serve as a valuable tool for the identification of epigenetic underpinnings of complex traits.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Expresión Génica/genética , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Humanos , Masculino , Esquizofrenia/genética , Adulto Joven
18.
Sci Rep ; 7(1): 13669, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057891

RESUMEN

Studies assessing the existence and magnitude of epistatic effects on complex human traits provide inconclusive results. The study of such effects is complicated by considerable increase in computational burden, model complexity, and model uncertainty, which in concert decrease model stability. An additional source introducing significant uncertainty with regard to the detection of robust epistasis is the biological distance between the genetic variation and the trait under study. Here we studied CpG methylation, a genetically complex molecular trait that is particularly close to genomic variation, and performed an exhaustive search for two-locus epistatic effects on the CpG-methylation signal in two cohorts of healthy young subjects. We detected robust epistatic effects for a small number of CpGs (N = 404). Our results indicate that epistatic effects explain only a minor part of variation in DNA-CpG methylation. Interestingly, these CpGs were more likely to be associated with gene-expression of nearby genes, as also shown by their overrepresentation in DNase I hypersensitivity sites and underrepresentation in CpG islands. Finally, gene ontology analysis showed a significant enrichment of these CpGs in pathways related to HPV-infection and cancer.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Adolescente , Adulto , Estudios de Cohortes , Islas de CpG , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Adulto Joven
19.
Nat Commun ; 8: 15193, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28443631

RESUMEN

Increasing age is tightly linked to decreased thickness of the human neocortex. The biological mechanisms that mediate this effect are hitherto unknown. The DNA methylome, as part of the epigenome, contributes significantly to age-related phenotypic changes. Here, we identify an epigenetic signature that is associated with cortical thickness (P=3.86 × 10-8) and memory performance in 533 healthy young adults. The epigenetic effect on cortical thickness was replicated in a sample comprising 596 participants with major depressive disorder and healthy controls. The epigenetic signature mediates partially the effect of age on cortical thickness (P<0.001). A multilocus genetic score reflecting genetic variability of this signature is associated with memory performance (P=0.0003) in 3,346 young and elderly healthy adults. The genomic location of the contributing methylation sites points to the involvement of specific immune system genes. The decomposition of blood methylome-wide patterns bears considerable potential for the study of brain-related traits.


Asunto(s)
Envejecimiento/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Sistema Inmunológico/inmunología , Memoria/fisiología , Neocórtex/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Islas de CpG/genética , Trastorno Depresivo Mayor/genética , Femenino , Variación Genética/genética , Humanos , Sistema Inmunológico/citología , Masculino , Persona de Mediana Edad , Suiza , Adulto Joven
20.
J Psychiatr Res ; 83: 260-268, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27710795

RESUMEN

DNA methylation represents an important link between structural genetic variation and complex phenotypes. The study of genome-wide CpG methylation and its relation to traits relevant to psychiatry has become increasingly important. Here, we analyzed quality metrics of 394,043 CpG sites in two samples of 568 and 319 mentally healthy young adults. For 25% of all CpGs we observed medium to large common epigenetic variation. These CpGs were overrepresented in open sea and shore regions, as well as in intergenic regions. They also showed a strong enrichment of significant hits in association analyses. Furthermore, a significant proportion of common DNA methylation is at least partially genetically driven and thus may be observed similarly across tissues. These findings could be of particular relevance for studies of complex neuropsychiatric traits, which often rely on proxy tissues.


Asunto(s)
Islas de CpG/genética , Epigénesis Genética/genética , Salud Mental , Adulto , Metilación de ADN/genética , Epigenómica/métodos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Voluntarios Sanos , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA