Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(11): 3390-3399, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358620

RESUMEN

BACKGROUND: Somatostatin-receptor (SSTR)-targeted PET/CT provides important clinical information in addition to standard imaging in meningioma patients. [18F]SiTATE is a novel, 18F-labeled SSTR-targeting peptide with superior imaging properties according to preliminary data. We provide the first [18F]SiTATE PET/CT data of a large cohort of meningioma patients. METHODS: Patients with known or suspected meningioma undergoing [18F]SiTATE PET/CT were included. Uptake intensity (SUV) of meningiomas, non-meningioma lesions, and healthy organs were assessed using a 50% isocontour volume of interest (VOI) or a spherical VOI, respectively. Also, trans-osseous extension on PET/CT was assessed. RESULTS: A total of 107 patients with 117 [18F]SiTATE PET/CT scans were included. Overall, 231 meningioma lesions and 61 non-meningioma lesions (e.g., post-therapeutic changes) were analyzed. Physiological uptake was lowest in healthy brain tissue, followed by bone marrow, parotid, and pituitary (SUVmean 0.06 ± 0.04 vs. 1.4 ± 0.9 vs. 1.6 ± 1.0 vs. 9.8 ± 4.6; p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6 ± 10.6 vs. 4.0 ± 3.3, p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6±10.6 vs. 4.0±3.3, p<0.001). 93/231 (40.3%) meningiomas showed partial trans-osseous extension and 34/231 (14.7%) predominant intra-osseous extension. 59/231 (25.6%) meningioma lesions found on PET/CT had not been reported on previous standard imaging. CONCLUSION: This is the first PET/CT study using an 18F-labeled SSTR-ligand in meningioma patients: [18F]SiTATE provides extraordinary contrast in meningioma compared to healthy tissue and non-meningioma lesions, which leads to a high detection rate of so far unknown meningioma sites and osseous involvement. Having in mind the advantageous logistic features of 18F-labeled compared to 68Ga-labeled compounds (e.g., longer half-life and large-badge production), [18F]SiTATE has the potential to foster a widespread use of SSTR-targeted imaging in neuro-oncology.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Compuestos Organometálicos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Meningioma/diagnóstico por imagen , Meningioma/patología , Receptores de Somatostatina , Péptidos , Neoplasias Meníngeas/diagnóstico por imagen
2.
Angew Chem Int Ed Engl ; 62(50): e202309002, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37850849

RESUMEN

The ring-opening Si-fluorination of a variety of azasilole derivatives cyclo-1-(iPr2 Si)-4-X-C6 H3 -2-CH2 NR (4: R=2,6-iPr2 C6 H3 , X=H; 4 a: R=2,4,6-Me3 C6 H2 , X=H; 9: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiO; 10: R=2,6-iPr2 C6 H3 , X=OH; 13: R=2,6-iPr2 C6 H3 , X=HCCCH2 O; 22: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiCH2 O) with different 19 F-fluoride sources was studied, optimized and the experience gained was used in a translational approach to create a straightforward 18 F-labelling protocol for the azasilole derivatives [18 F]6 and [18 F]14. The latter constitutes a potential clickable CycloSiFA prosthetic group which might be used in PET tracer development using Cu-catalysed triazole formation. Based on our findings, CycloSiFA has the potential to become a new entry into non-canonical labelling methodologies for radioactive PET tracer development.

3.
Eur J Nucl Med Mol Imaging ; 48(11): 3571-3581, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33928401

RESUMEN

PURPOSE: Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). [18F]SiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS: Eight NET patients received a [18F]SiTATE-PET/CT (250 ± 66 MBq) with repeated emission scans (10, 30, 60, 120, 180 min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS: After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004 mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120 min images. CONCLUSION: [18F]SiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180 min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of [18F]SiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120 min, followed by 60 min after injection.


Asunto(s)
Tumores Neuroendocrinos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Computadores , Femenino , Humanos , Masculino , Tumores Neuroendocrinos/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiometría , Distribución Tisular
4.
Bioorg Med Chem Lett ; 48: 128241, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34217827

RESUMEN

Receptor-specific peptides labeled with positron emitters play an important role in the clinical imaging of several malignancies by positron emission tomography (PET). Radiolabeled heterobivalent bispecific peptidic ligands (HBPLs) can target more than one receptor type and by this - besides exhibiting other advantages - increase tumor imaging sensitivity. In the present study, we show the initial in vivo evaluation of the most potent heterobivalent gastrin-releasing peptide receptor (GRPR)- and vasoactive intestinal peptide receptor subtype 1 (VPAC1R)-bispecific radiotracer and determined its tumor visualization potential via PET/CT imaging. For this purpose, the most potent described HBPL was synthesized together with its partly scrambled heterobivalent monospecific homologs and its monovalent counterparts. The agents were efficiently labeled with 68Ga3+ and evaluated in an initial PET/CT tumor imaging study in a human prostate carcinoma (PCa) xenograft rat tumor model established for this purpose. None of the three 68Ga-HBPLs enabled a clear tumor visualization and a considerably higher involvement in receptor-mediated uptake was found for the GRPR-binding part of the molecule than for the VPAC1R-binding one. Of the monovalent radiotracers, only [68Ga]Ga-NODA-GA-PESIN could efficiently delineate the tumor, confirming the results. Thus, this work sets the direction for future developments in the field of GRPR- and VPAC1R-bispecific radioligands, which should be based on other VPAC1R-specific peptides than PACAP-27.


Asunto(s)
Péptidos/química , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Receptores de Bombesina/química , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/química , Humanos , Masculino , Estructura Molecular
5.
Chemistry ; 26(69): 16349-16356, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32618007

RESUMEN

We describe multimodal imaging probes for gastrin-releasing peptide receptor (GRPR)-specific targeting suited for positron emission tomography and optical imaging (PET/OI), consisting of PESIN (PEG3 -BBN7-14 ) dimers connected to multimodal imaging subunits. These multimodal agents comprise a fluorescent dye for OI and the chelator ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) (NODA-GA) for PET radiometal isotope labelling. Special focus was put on the influence of the used dyes on the properties of the whole bioconjugates. For this, several compounds with different fluorescent dyes and non-dye carrying subunits were synthesized and investigated. As fluorescent dyes, dansyl, NBD, derivatives of fluorescein, coumarin and rhodamine as well as three pyrilium-based dyes were employed. Considerable influence of the charge of the colored unit on hydrophilicity as well as in vitro target receptor binding was observed and classified. High radiochemical yields and purities were found during radiolabeling of the multimodal imaging subunits as well as their GRPR-specific bioconjugates with 68 Ga. Examinations of the photophysical properties of both molecule species displayed no loss or alteration of fluorescence characteristics.


Asunto(s)
Imagen Molecular , Neoplasias de la Próstata , Radiofármacos/química , Receptores de Bombesina/metabolismo , Humanos , Masculino , Tomografía de Emisión de Positrones , Receptores de Bombesina/química
6.
J Labelled Comp Radiopharm ; 62(8): 471-482, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-30980411

RESUMEN

Gold nanoparticles (AuNPs) have been used for many years in cancer treatment mainly for brachytherapy, but in the last 15 years, the focus has shifted to the development of ultrasmall target-specific AuNPs with homogeneous size and, ultimately, tailored shapes for use in various imaging modalities such as computed tomography (CT), Raman, or photoacoustic imaging. Here, we report on the development of tumor-specific AuNPs as diagnostic tools intended for the dual detection of prostate cancer via optical imaging (OI) and positron emission tomography (PET). The AuNPs were decorated with a near-infrared dye and NODAGA chelator for complexation with radiometals. Radiolabeling with 64 Cu was performed either indirect by complexation with NODAGA-AuNPs or by direct reduction of [64 Cu]Cu(0) onto the surface of the AuNPs. Both methods yielded stable 64 Cu-AuNPs with radiochemical yield more than 95% confirmed by HPLC. 64 Cu-AuNPs were evaluated in a dual-imaging setting in vitro and in vivo and exhibited favorable diagnostic properties concerning detection, biodistribution, and clearance. Furthermore, the first therapeutic properties of the 64 Cu-AuNPs were evaluated in vitro concerning acute and long-term toxicity, indicating that these 64 Cu-AuNPs could be used in therapeutic concepts in the future.


Asunto(s)
Radioisótopos de Cobre/química , Oro/química , Nanopartículas del Metal/química , Imagen Óptica/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Marcaje Isotópico , Masculino , Ratones , Células PC-3 , Distribución Tisular
7.
Bioconjug Chem ; 29(5): 1525-1533, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29542916

RESUMEN

Gold nanoparticles (AuNPs) have widely been used for 70 years in cancer treatment, but only in the last 15 years has the focus been on specific AuNPs with homogeneous size and shape for various areas in science. They constitute a perfect platform for multifunctionalization and therefore enable the enhancement of target affinity. Here we report on the development of tumor specific AuNPs as diagnostic tools intended for the detection of prostate cancer via fluorescence imaging and positron emission tomography (PET). The AuNPs were further evaluated in vitro and in vivo and exhibited favorable diagnostic properties concerning tumor cell uptake, biodistribution, clearance, and tumor retention.


Asunto(s)
Antígenos de Superficie/análisis , Glutamato Carboxipeptidasa II/análisis , Oro/farmacocinética , Nanopartículas del Metal/análisis , Imagen Óptica/métodos , Péptidos/farmacocinética , Neoplasias de la Próstata/diagnóstico por imagen , Receptores de Bombesina/análisis , Animales , Oro/administración & dosificación , Oro/química , Humanos , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Microscopía Fluorescente/métodos , Células PC-3 , Péptidos/administración & dosificación , Péptidos/química , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/patología , Ratas
9.
Bioconjug Chem ; 27(2): 267-79, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26566577

RESUMEN

Unorthodox (18)F-labeling strategies not employing the formation of a carbon-(18)F bond are seldom found in radiochemistry. Historically, the formation of a boron- or silicon-(18)F bond has been introduced very early on into the repertoire of labeling chemistries, but is without translation into any clinical radiotracer besides inorganic B[(18)F]F4(-) for brain tumor diagnosis. For many decades these labeling methodologies were forgotten and have just recently been revived by a handful of researchers thinking outside the box. When breaking with established paradigms such as the inability to obtain labeled compounds of high specific activity via isotopic exchange or performing radiofluorination in aqueous media, the research community often reacts skeptically. In 2005 and 2006, two novel labeling methodologies were introduced into radiochemistry for positron emission tomography (PET) tracer development: RBF3(-) labeling reported by Perrin et al. and the SiFA methodology by Schirrmacher, Jurkschat, and Waengler et al. which is based on isotopic exchange (IE). Both labeling methodologies have been complemented by other noncanonical strategies to introduce (18)F into biomolecules of diagnostic importance, thus profoundly enriching the landscape of (18)F radiolabeling. B- and Si-based labeling strategies finally revealed that IE is a viable alternative to established and traditional radiochemistry with the advantage of simplifying both the labeling effort as well as the necessary purification of the radiotracer. Hence IE will be the focus of this contribution over other noncanonical labeling methods. Peptides for tumor imaging especially lend themselves favorably toward one-step labeling via IE, but small molecules have been described as well, taking advantage of these new approaches, and have been used successfully for brain imaging. This Review gives an account of both radiochemistries centered on boron and silicon, describing the very beginnings of their basic research, the path that led to optimization of their chemistries, and the first encouraging preclinical results paving the way to their clinical use. This side by side approach will give the reader the opportunity to follow the development of a new basic discovery into a clinically applicable radiotracer including all the hurdles that have had to be overcome.


Asunto(s)
Boratos/química , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Silicio/química , Animales , Fluoruros/química , Humanos , Péptidos/química , Bibliotecas de Moléculas Pequeñas/química
10.
J Labelled Comp Radiopharm ; 58(10): 395-402, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26219022

RESUMEN

Peptidic radiotracers are highly potent substances for the specific in vivo imaging of various biological targets with Single Photon Emission Computed Tomography and Positron Emission Tomography. However, some radiolabeled peptides such as bombesin analogs were shown to exhibit only a limited stability, hampering a successful target visualization. One option to positively influence the stability of radiolabeled peptides is the introduction of certain artificial molecular scaffolds. In order to comparatively assess the influence of different structure elements on the stability of radiolabeled peptides and to identify those structure elements being most useful for peptide radiotracer stabilization, several monomeric and dimeric bombesin derivatives were synthesized, exhibiting differing molecular designs and the chelator NODAGA for (68) Ga-labeling. The radiolabeled peptides were evaluated regarding their in vitro stability in human serum to determine the influence of the introduced molecular scaffolds on the peptides' serum stabilities. The results of the evaluations showed that the introduction of scaffold structures and the overall molecular design have a substantial impact on the stabilities of the resulting peptidic radiotracers. But besides some general trends found using certain scaffold structures, the obtained results point to the necessity to empirically assess their influence on stability for each susceptible peptidic radiotracer individually.


Asunto(s)
Acetatos/química , Bombesina/análogos & derivados , Radioisótopos de Galio/química , Compuestos Heterocíclicos con 1 Anillo/química , Fragmentos de Péptidos/síntesis química , Radiofármacos/síntesis química , Bombesina/síntesis química , Bombesina/química , Humanos , Fragmentos de Péptidos/química , Estabilidad Proteica , Radiofármacos/química , Suero , Tomografía Computarizada de Emisión de Fotón Único
11.
Radiology ; 270(2): 517-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24056402

RESUMEN

PURPOSE: To evaluate diagnostic performance of gallium 68-tetraazacyclododecane tetraacetic acid-octreotate ((68)Ga-DOTATATE) in detection of recurrent neuroendocrine tumors (NETs). MATERIALS AND METHODS: Approval was waived by the local ethics committee for this retrospective study. Between 2007 and 2011, 63 patients (mean age, 58 years) were examined with (68)Ga-DOTATATE positron emission tomography (PET)/computed tomography (CT) after primary NET curative resection. Reasons for PET/CT were regular follow-up examinations (n = 30), increased plasma levels of tumor markers (n = 27), or clinical suspicion of recurrence (n = 6). Final diagnosis was determined with histopathologic verification (n = 25) or clinical follow-up (n = 38). PET/CT scans were evaluated in consensus by two readers without blinding to clinical information and independently by two readers with blinding. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. RESULTS: Final diagnosis of NET recurrence was determined in 29 patients. In three other patients, tumors of nonneuroendocrine origin were diagnosed. (68)Ga-DOTATATE PET/CT helped identify NET recurrence in 26 of 29 patients (sensitivity, 90%) and exclude presence of recurrent NET in 28 of 34 patients (specificity, 82% ). PET/CT provided false-positive and false-negative results in six and three patients (PPV, 81% [26 of 32]; NPV, 90% [28 of 31]; accuracy, 86% [54 of 63]). In gastroenteropancreatic NET (n = 45), sensitivity was 94% (17 of 18); specificity was 89% (24 of 27); PPV was 85% (17 of 20); NPV was 96% (24 of 25); and accuracy was 91% (41 of 45). Two blinded readers achieved sensitivity of 79% (23 of 29) and 76% (22 of 29); specificity of 85% (29 of 34) and 94% (32 of 34) (κ = 0.80); and accuracy of 83% and 86%. CONCLUSION: (68)Ga-DOTATATE PET/CT is accurate in detection of recurrent NET. Blinded PET/CT review markedly decreased sensitivity, underlining importance of considering clinical parameters in NET recurrence. Present results must be further validated to substantiate use of (68)Ga-DOTATATE PET/CT in routine follow-up after curative resection of NET.


Asunto(s)
Imagen Multimodal , Recurrencia Local de Neoplasia/diagnóstico por imagen , Tumores Neuroendocrinos/diagnóstico por imagen , Compuestos Organometálicos , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/cirugía , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad
12.
Bioconjug Chem ; 25(3): 489-500, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24533789

RESUMEN

The gastrin releasing peptide receptor (GRPR), being overexpressed on several tumor types, represents a promising target for specific noninvasive in vivo tumor imaging using positron emission tomography. Many of the radiolabeled bombesin analogs being applied in tumor imaging, however, suffer from shortcomings such as limited in vivo stability and poor tumor to background ratios. These obstacles can be overcome by peptide multimerization, as this approach results in constructs comprising several copies of the same peptide, thus retaining the ability to specifically bind to the target structure even if one peptide is cleaved. Furthermore, peptide multimers can result in increased binding avidities to the target, which can entail higher absolute tumor uptakes and also tumor to background levels. We therefore synthesized monomers and multimers of the peptide PESIN on dendrimer scaffolds comprising linkers of different lengths. The monomers/multimers were functionalized with the chelator NODAGA, efficiently radiolabeled with (68)Ga and evaluated in vitro regarding their GRPR binding affinity. The results show that shorter distances between the peptide moieties result in substantially higher binding affinities/avidities of the monovalent/multivalent PESIN ligands to the GRPR. Furthermore, the bivalent ligands gave the best results in terms of binding avidity, achieving a 2.5-fold increase in avidity compared to the respective monomer. Moreover, the most potent bivalent ligand showed an about 2-fold higher absolute tumor uptake and twice as high tumor-to-background ratios than the monomeric reference DOTA-PESIN in an initial animal PET study in tumor-bearing mice. Thus, besides high avidities, multivalency also positively influences the in vivo pharmacokinetics of peptide multimers.


Asunto(s)
Neoplasias Experimentales/metabolismo , Oligopéptidos/metabolismo , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Receptores de Bombesina/metabolismo , Animales , Radioisótopos de Galio/química , Humanos , Ligandos , Ratones , Ratones Desnudos , Ratones SCID , Conformación Molecular , Neoplasias Experimentales/diagnóstico , Oligopéptidos/síntesis química , Oligopéptidos/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Receptores de Bombesina/biosíntesis , Células Tumorales Cultivadas
13.
Bioconjug Chem ; 25(4): 738-49, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24666287

RESUMEN

Gastrin-releasing-peptide (GRP)-receptors and αvß3-integrins are widely discussed as potential target structures for oncological imaging with positron emission tomography (PET). Favored by the overexpression of receptors on the surface of tumor cells good imaging characteristics can be achieved with highly specific radiolabeled receptor ligands. PEGylated bombesin (PESIN) derivatives as specific GRP receptor ligands and RGD (one-letter codes for arginine-glycine-aspartic acid) peptides as specific αvß3 binders were synthesized and tagged with a silicon-fluorine-acceptor (SiFA) moiety. The SiFA synthon allows for a fast and highly efficient isotopic exchange reaction at room temperature giving the [(18)F]fluoride labeled peptides in up to 62% radiochemical yields (d.c.) and ≥99% radiochemical purity in a total synthesis time of less than 20 min. Using nanomolar quantities of precursor high specific activities of up to 60 GBq µmol(-1) were obtained. To compensate the high lipophilicity of the SiFA moiety various hydrophilic structure modifications were introduced leading to significantly reduced logD values. Competitive displacement experiments with the PESIN derivatives showed a 32 to 6 nM affinity to the GRP receptor on PC3 cells, and with the RGD peptides a 7 to 3 µM affinity to the αvß3 integrins on U87MG cells. All derivatives proved to be stable in human plasma over at least 120 min. Small animal PET measurements and biodistribution studies revealed an enhanced and specific accumulation of the RGD peptide (18)F-SiFA-LysMe3-γ-carboxy-d-Glu-RGD (17) in the tumor tissue of U87MG tumor-bearing mice of 5.3% ID/g whereas the PESIN derivatives showed a high liver uptake and only a low accumulation in the tumor tissue of PC3 xenografts. Stability studies with compound 17 provided further information on its metabolism in vivo. These results altogether demonstrate that the reduction of the overall lipophilicity of SiFA tagged RGD peptides is a promising approach for the generation of novel potent (18)F-labeled imaging agents.


Asunto(s)
Bombesina/metabolismo , Radioisótopos de Flúor/química , Imagen Molecular/métodos , Neoplasias Experimentales/metabolismo , Oligopéptidos/metabolismo , Tomografía de Emisión de Positrones/métodos , Silicio/química , Animales , Bombesina/química , Bombesina/farmacocinética , Femenino , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacocinética , Humanos , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacocinética , Estructura Molecular , Oligopéptidos/química , Oligopéptidos/farmacocinética , Silicio/metabolismo , Silicio/farmacocinética , Células Tumorales Cultivadas
14.
Molecules ; 19(6): 6952-74, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24871573

RESUMEN

Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET).


Asunto(s)
Dendrímeros/síntesis química , Imagen Molecular/métodos , Técnicas de Síntesis en Fase Sólida/métodos , Química Clic , Dendrímeros/química , Tomografía de Emisión de Positrones/métodos
15.
Expert Opin Ther Pat ; 34(4): 231-244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38785069

RESUMEN

INTRODUCTION: The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED: Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION: While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.


Asunto(s)
Diseño de Fármacos , Desarrollo de Medicamentos , Patentes como Asunto , Inhibidores de Proteínas Quinasas , Transducción de Señal , Humanos , Animales , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Mutación
16.
Front Med (Lausanne) ; 11: 1407235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903806

RESUMEN

Purpose: This study compares phantom-based variability of extracted radiomics features from scans on a photon counting CT (PCCT) and an experimental animal PET/CT-scanner (Albira II) to investigate the potential of radiomics for translation from animal models to human scans. While oncological basic research in animal PET/CT has allowed an intrinsic comparison between PET and CT, but no 1:1 translation to a human CT scanner due to resolution and noise limitations, Radiomics as a statistical and thus scale-independent method can potentially close the critical gap. Methods: Two phantoms were scanned on a PCCT and animal PET/CT-scanner with different scan parameters and then the radiomics parameters were extracted. A Principal Component Analysis (PCA) was conducted. To overcome the limitation of a small dataset, a data augmentation technique was applied. A Ridge Classifier was trained and a Feature Importance- and Cluster analysis was performed. Results: PCA and Cluster Analysis shows a clear differentiation between phantom types while emphasizing the comparability of both scanners. The Ridge Classifier exhibited a strong training performance with 93% accuracy, but faced challenges in generalization with a test accuracy of 62%. Conclusion: These results show that radiomics has great potential as a translational tool between animal models and human routine diagnostics, especially using the novel photon counting technique. This is another crucial step towards integration of radiomics analysis into clinical practice.

17.
Amino Acids ; 45(5): 1097-108, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23921782

RESUMEN

Radiolabeled peptides have emerged as an attractive platform for the diagnostic and therapeutic oncology. However, the (11)C-radiolabeling of peptides for positron emission tomography (PET) has been poorly explored, owing to the relatively short half-life of carbon-11 (t 1/2 = 20.3 min) and time-consuming multi-step radiochemical reactions. Existing methods have found limited use and are not routinely encountered in the production of radiotracers. Herein, we propose a facile one-step direct (11)C-methylation of cysteine residues in peptides using [(11)C]methyl triflate under ambient temperatures (20 °C) and short reaction times, on the order of seconds. Good regioselectivity of this method was demonstrated by HPLC in a simple peptide (glutathione, GSH) and a more complex test decapeptide (Trp-Tyr-Trp-Ser-Arg-Cys-Lys-Trp-Thr-Gly) bearing multiple nucleophilic sites. In addition, we extend this method towards the synthesis of [(11)C]Cys(Me)-[Tyr(3)-octreotate] as a demonstration of applicability for peptides of biological interest. This octreotate derivative was obtained in non-decay-corrected radiochemical yields of 11 ± 2 % (n = 3) with a synthesis time of approx. 30 min.


Asunto(s)
Cisteína/química , Mesilatos/química , Péptidos/química , Tomografía de Emisión de Positrones/instrumentación , Radiofármacos/síntesis química , Radioisótopos de Carbono/química , Marcaje Isotópico
18.
Molecules ; 18(6): 6469-90, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736785

RESUMEN

Molecular imaging-and especially Positron Emission Tomography (PET)-is of increasing importance for the diagnosis of various diseases and thus is experiencing increasing dissemination. Consequently, there is a growing demand for appropriate PET tracers which allow for a specific accumulation in the target structure as well as its visualization and exhibit decay characteristics matching their in vivo pharmacokinetics. To meet this demand, the development of new targeting vectors as well as the use of uncommon radionuclides becomes increasingly important. Uncommon nuclides in this regard enable the utilization of various selectively accumulating bioactive molecules such as peptides, antibodies, their fragments, other proteins and artificial structures for PET imaging in personalized medicine. Among these radionuclides, 89Zr (t1/2 = 3.27 days and mean Eß+ = 0.389 MeV) has attracted increasing attention within the last years due to its favorably long half-life, which enables imaging at late time-points, being especially favorable in case of slowly-accumulating targeting vectors. This review outlines the recent developments in the field of 89Zr-labeled bioactive molecules, their potential and application in PET imaging and beyond, as well as remaining challenges.


Asunto(s)
Imagen Molecular , Tomografía de Emisión de Positrones , Radiofármacos/química , Circonio/química , Deferoxamina/química , Marcaje Isotópico
19.
Molecules ; 18(7): 7930-56, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23884128

RESUMEN

Application of microfluidics to Positron Emission Tomography (PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.


Asunto(s)
Microfluídica/métodos , Tomografía de Emisión de Positrones , Trazadores Radiactivos , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentación , Control de Calidad , Radioisótopos , Radiofármacos/síntesis química
20.
ChemMedChem ; 18(1): e202200495, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259364

RESUMEN

[68 Ga]Ga3+ can be introduced into receptor-specific peptidic carriers via different chelators to obtain radiotracers for Positron Emission Tomography imaging and the chosen chelating agent considerably influences the in vivo pharmacokinetics of the corresponding radiopeptides. A chelator that should be a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides would be a backbone-functionalized variant of the chelator CB-DO2A. Here, the bifunctional cross-bridged chelating agent CB-DO2A-GA was developed and compared to the established chelators DOTA, NODA-GA and DOTA-GA. For this purpose, CB-DO2A-GA(tBu)2 was introduced into the peptide Tyr3 -octreotate (TATE) and in direct comparison to the corresponding DOTA-, NODA-GA-, and DOTA-GA-modified TATE analogs, CB-DO2A-GA-TATE required harsher reaction conditions for 68 Ga-incorporation. Regarding the hydrophilicity profile of the resulting radiopeptides, a decrease in hydrophilicity from [68 Ga]Ga-DOTA-GA-TATE (logD(7.4) of -4.11±0.11) to [68 Ga]Ga-CB-DO2A-GA-TATE (-3.02±0.08) was observed. Assessing the stability against metabolic degradation and complex challenge, [68 Ga]Ga-CB-DO2A-GA demonstrated a very high kinetic inertness, exceeding that of [68 Ga]Ga-DOTA-GA. Therefore, CB-DO2A-GA is a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides, especially when the formation of a very stable, positively charged 68 Ga-complex is pursued.


Asunto(s)
Quelantes , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Péptidos , Péptidos Cíclicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA