Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(18): e2309283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38230862

RESUMEN

The appeal of carbon dots (CDs) has grown recently, due to their established biocompatibility, adjustable photoluminescence properties, and excellent water solubility. For the first time in the literature, copper chlorophyllin-based carbon dots (Chl-D CDs) are successfully synthesized. Chl-D CDs exhibit unique spectroscopic traits and are found to induce a Fenton-like reaction, augmenting photodynamic therapy (PDT) efficacies via ferroptotic and apoptotic pathways. To bolster the therapeutic impact of Chl-D CDs, a widely used cancer drug, temozolomide, is linked to their surface, yielding a synergistic effect with PDT and chemotherapy. Chl-D CDs' biocompatibility in immune cells and in vivo models showed great clinical potential.Proteomic analysis was conducted to understand Chl-D CDs' underlying cancer treatment mechanism. The study underscores the role of reactive oxygen species formation and pointed toward various oxidative stress modulators like aldolase A (ALDOA), aldolase C (ALDOC), aldehyde dehydrogenase 1B1 (ALDH1B1), transaldolase 1 (TALDO1), and transketolase (TKT), offering a deeper understanding of the Chl-D CDs' anticancer activity. Notably, the Chl-D CDs' capacity to trigger a Fenton-like reaction leads to enhanced PDT efficiencies through ferroptotic and apoptotic pathways. Hence, it is firmly believed that the inherent attributes of Chl-CDs can lead to a secure and efficient combined cancer therapy.


Asunto(s)
Carbono , Clorofilidas , Ferroptosis , Carbono/química , Humanos , Ferroptosis/efectos de los fármacos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Hierro/química , Línea Celular Tumoral , Fotoquimioterapia/métodos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/química , Apoptosis/efectos de los fármacos
2.
Chemistry ; 30(8): e202303509, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38212244

RESUMEN

Triarylhydrazones represent an attractive class of photochromic compounds offering many interesting features including high molar absorptivity, good addressability, and extraordinary thermal stability. In addition, unlike most other hydrazone-based photoswitches, they effectively absorb light above 365 nm. However, previously prepared triaryhydrazones suffer from low quantum yields of the Z→E photoisomerization. Here, we have designed a new subclass of naphthoyl-benzothiazole hydrazones that balance the most beneficial features of previously reported naphthoyl-quinoline and benzoyl-pyridine triarylhydrazones. These preserve the attractive absorption characteristics, exhibit higher thermal stability of the metastable form than the former and enhance the rate of the Z→E photoisomerization compared to the later, as a result of the weakening of the intramolecular hydrogen bonding between the hydrazone hydrogen and the benzothiazole moiety. Introducing the benzothiazole motif extends the tunability of the photochromic behaviour of hydrazone-based switches.

3.
Chemistry ; 30(8): e202400141, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38263845

RESUMEN

Invited for the cover of this issue are Marek Cigán, Anna M. Grabarz and co-workers. The image depicts how a non-expert might imagine a "molecular photoswitch". Read the full text of the article at 10.1002/chem.202303509.

4.
Chemphyschem ; : e202400453, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382835

RESUMEN

The red/green cyanobacteriochrome (CBCR) slr1393g3 exhibits a quantum yield of only 8% for its forward photoconversion significantly lower than other species from the same CBCR subfamily. The cause for this reduced photoconversion is not yet clear, although in the related NpR6012g4 dark-state structural heterogeneity of a paramount Trp residue has been proposed to cause the formation of nonproductive subpopulation. However, there is no such information on the equivalent residue in slr1393g3, W496. Here we use solid-state NMR to explore all possible sidechain rotamers of this Trp residue and their local interactions at the atomic level. The indole nitrogen (Nε1) is used as an NMR probe, achieved by site-specific 15N-indole labeling of a quadruply Trp-deleted variant and trehalose vitrification technique. The data reveal a set of seven indole rotamers of W496 with four distinct environments for the Nε1-H group. Only a minority population of 20% is found to retain the π-stacking and hydrogen-bonding interactions with the chromophore in the dark state that has been assigned to account for complete forward photoconversion. Our results demonstrate the direct role of W496 in modulating the forward quantum yield of slr1393g3 via rearrangement of its sidechain rotameric conformations.

5.
Phys Chem Chem Phys ; 26(8): 7157-7165, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38348887

RESUMEN

Förster resonance energy transfer (FRET) measurements between two dyes is a powerful method to interrogate both structure and dynamics of biopolymers. The intensity of a fluorescence signal in a FRET measurement is dependent on both the distance and the relative orientation of the dyes. The latter can at the same time both complicate the analysis and give more detailed information. Here we present a detailed spectroscopic study of the energy transfer between the rigid FRET labels Çmf (donor) and tCnitro (quencher/acceptor) within the neomycin aptamer N1. The energy transfer originates from multiple emitting states of the donor and occurs on a low picosecond to nanosecond time-scale. To fully characterize the energy transfer, ultrafast transient absorption measurements were performed in conjunction with static fluorescence and time-correlated single photon counting (TCSPC) measurements, showing a clear distance dependence of both signal intensity and lifetime. Using a known NMR structure of the ligand-bound neomycin aptamer, the distance between the two labels was used to estimate κ2 and, therefore, make qualitative statements about the change in orientation after ligand binding with unprecedented temporal and spatial resolution. The advantages and potential applications of absorption-based methods using rigid labels for the characterization of FRET processes are discussed.


Asunto(s)
Colorantes , Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Ligandos , Oligonucleótidos , Análisis Espectral
6.
Angew Chem Int Ed Engl ; 63(10): e202314112, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38059778

RESUMEN

Compounds with multiple photoswitching units are appealing for complex photochemical control of molecular materials and nanostructures. Herein, we synthesized novel meta- and para- connected (related to the nitrogen of the indoline) azobenzene-spiropyran dyads, in which the central benzene unit is shared by both switches. We investigated their photochemistry using static and time-resolved transient absorption spectroscopy as well as quantum chemical calculations. In the meta-compound, the individual components are photochemically decoupled due to the meta-pattern. In the para-compound the spiro-connectivity leads to a bifunctional photoswitchable system with a red-shifted absorption. The azobenzene and the spiropyran can thus be addressed and switched independently by light of appropriate wavelength. Through the different connectivity patterns two different orthogonally photoswitchable systems have been obtained which are promising candidates for complex applications of light control.

7.
Angew Chem Int Ed Engl ; 63(9): e202317047, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38103205

RESUMEN

Various protein functions are related to vibrational energy transfer (VET) as an important mechanism. The underlying transfer pathways can be experimentally followed by ultrafast Vis-pump/IR-probe spectroscopy with a donor-sensor pair of non-canonical amino acids (ncAAs) incorporated in a protein. However, so far only one donor ncAA, azulenylalanine (AzAla), exists, which suffers from a comparably low Vis extinction coefficient. Here, we introduce two novel donor ncAAs based on an iminothioindoxyl (ITI) chromophore. The dimethylamino-ITI (DMA-ITI) and julolidine-ITI (J-ITI) moieties overcome the limitation of AzAla with a 50 times higher Vis extinction coefficient. While ITI moieties are known for ultrafast photoswitching, DMA-ITI and J-ITI exclusively form a hot ground state on the sub-ps timescale instead, which is essential for their usage as vibrational energy donor. In VET measurements of donor-sensor dipeptides we investigate the performance of the new donors. We observe 20 times larger signals compared to the established AzAla donor, which opens unprecedented possibilities for the study of VET in proteins.


Asunto(s)
Aminoácidos , Proteínas , Espectrofotometría Infrarroja , Transferencia de Energía , Vibración
8.
Biophys J ; 122(6): 1003-1017, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36528791

RESUMEN

Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.


Asunto(s)
Rodopsina , ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Rodopsina/química , Modelos Moleculares , Mutación , Sodio/metabolismo , Luz
9.
J Am Chem Soc ; 145(40): 21832-21840, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773976

RESUMEN

The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.

10.
J Am Chem Soc ; 145(27): 14811-14822, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364887

RESUMEN

The Hula-Twist (HT) photoreaction represents a fundamental photochemical pathway for bond isomerizations and is defined by the coupled motion of a double bond and an adjacent single bond. This photoreaction has been suggested as the defining motion for a plethora of light-responsive chromophores such as retinal within opsins, coumaric acid within photoactive yellow protein, or vitamin D precursors, and stilbenes in solution. However, due to the fleeting character of HT photoproducts a direct experimental observation of this coupled molecular motion was severely hampered until recently. To solve this dilemma, the Dube group has designed a molecular framework able to deliver unambiguous experimental evidence of the HT photoreaction. Using sterically crowded atropisomeric hemithioindigo (HTI) the HT photoproducts are rendered thermally stable and can be observed directly after their formation. However, following the ultrafast excited state process of the HT photoreaction itself has not been achieved so far and thus crucial information for an elementary understanding is still missing. In this work, we present the first ultrafast spectroscopy study of the HT photoreaction in HTI and probe the competition between different excited state processes. Together with extensive excited state calculations a detailed mechanistic picture is developed explaining the significant solvent effects on the HT photoreaction and revealing the intricate interplay between productive isomerizations and unproductive twisted intramolecular charge transfer (TICT) processes. With this study essential insights are thus gained into the mechanism of complex multibond rotations in the excited state, which will be of primary importance for further developments in this field.

11.
Nucleic Acids Res ; 49(7): 3661-3671, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33772594

RESUMEN

Among the many in vitro-selected aptamers derived from SELEX protocols, only a small fraction has the potential to be applied for synthetic riboswitch engineering. Here, we present a comparative study of the binding properties of three different aptamers that bind to ciprofloxacin with similar KD values, yet only two of them can be applied as riboswitches. We used the inherent ligand fluorescence that is quenched upon binding as the reporter signal in fluorescence titration and in time-resolved stopped-flow experiments. Thus, we were able to demonstrate differences in the binding kinetics of regulating and non-regulating aptamers. All aptamers studied underwent a two-step binding mechanism that suggests an initial association step followed by a reorganization of the aptamer to accommodate the ligand. We show that increasing regulatory potential is correlated with a decreasing back-reaction rate of the second binding step, thus resulting in a virtually irreversible last binding step of regulating aptamers. We suggest that a highly favoured structural adaption of the RNA to the ligand during the final binding step is essential for turning an aptamer into a riboswitch. In addition, our results provide an explanation for the fact that so few aptamers with regulating capacity have been found to date. Based on our data, we propose an adjustment of the selection protocol for efficient riboswitch detection.


Asunto(s)
Aptámeros de Nucleótidos/química , Ciprofloxacina/química , ARN/química , Riboswitch , Técnica SELEX de Producción de Aptámeros/métodos , Ligandos , Conformación de Ácido Nucleico
12.
Proc Natl Acad Sci U S A ; 117(28): 16356-16362, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32591422

RESUMEN

Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.


Asunto(s)
Fitocromo/química , Fitocromo/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cristalografía por Rayos X , Isomerismo , Cinética , Modelos Moleculares , Nostoc/metabolismo , Procesos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
13.
Chemistry ; 28(35): e202200647, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35420716

RESUMEN

In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin- based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen-bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent-dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Cumarinas/química , Enlace de Hidrógeno , Fotoquímica , Fotólisis
14.
Photochem Photobiol Sci ; 21(9): 1627-1636, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35687310

RESUMEN

The ability of some knotless phytochromes to photoconvert without the PHY domain allows evaluation of the distinct effect of the PHY domain on their photodynamics. Here, we compare the ms dynamics of the single GAF domain (g1) and the GAF-PHY (g1g2) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. While the spectral signatures and occurrence of the intermediates are mostly unchanged by the domain composition, the presence of the PHY domain slows down the early forward and reverse dynamics involving chromophore and protein binding pocket relaxation. We assign this effect to a more restricted binding pocket imprinted by the PHY domain. The photoproduct formation is also slowed down by the presence of the PHY domain but to a lesser extent than the early dynamics. This indicates a rate limiting step within the GAF and not the PHY domain. We further identify a pH dependence of the biphasic photoproduct formation hinting towards a pKa dependent tuning mechanism. Our findings add to the understanding of the role of the individual domains in the photocycle dynamics and provide a basis for engineering of phytochromes towards biotechnological applications.


Asunto(s)
Nostoc , Fitocromo , Proteínas Bacterianas/química , Nostoc/metabolismo , Fitocromo/química , Unión Proteica
15.
Phys Chem Chem Phys ; 24(3): 1795-1802, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985062

RESUMEN

In view of the demand for photoactivatable probes that operate in the visible (VIS) to near infrared (NIR) region of the spectrum, we designed a bichromophoric system based on a rhodamine fluorophore and a BODIPY photocage. Two-photon excited fluorescence (TPEF) measurements and quantum chemical calculations reveal excellent two-photon properties of the employed rhodamine derivative. Excitation of the rhodamine unit via a one- or two-photon process leads to excitation energy transfer (EET) onto the BODIPY part, which is followed by the liberation of the leaving group. Ultrafast transient absorption spectroscopy provides evidence for a highly efficient EET dynamics on a sub-500 femtosecond scale. Complementary quantum dynamical calculations using the multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) approach highlight the quantum coherent character of the EET transfer. Photorelease of p-nitroaniline (PNA) was investigated by UV/vis absorption spectroscopy by either excitation of the rhodamine or the BODIPY moiety. Even though a quantitative assessment of the PNA yield could not be achieved for this particular BODIPY cage, the present study provides a design principle for a class of photocages that can be broadly activated between 500 and 900 nm.

16.
Phys Chem Chem Phys ; 24(9): 5294-5300, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174833

RESUMEN

The photochemistry of fluorenols has been of special interest for many years. This is because both the fluorenol and the fluorenyl cation are antiaromatic in the ground state due to their 4n π-electrons according to the Hückel rule. The photolysis reaction of various fluorene derivatives takes place via a cation intermediate and is preferred due to its excited state aromaticity. Here we present an extremely long-lived fluorenyl cation and its effects on the uncaging of various leaving groups. We analyze the relationship between uncaging quantum yields of fluorene-based cages and the longevity of their fluorenyl cations with different spectroscopic methods in the steady state and on an ultrafast time scale and find that the uncaging quantum yield rises with the stability of the cation. In contrast to previous reports, the cation can be observed on a time scale of minutes, even in moderately protic solvents as methanol and ethanol. The stability of this cation depends on the dimethylamino-substituents on the fluorene scaffold and the properties of the solvent. In addition, with bis-dimethylamino fluorenol, a photobase is introduced that expands the small group of known photoinduced hydroxide emitters.


Asunto(s)
Electrones , Cationes/química , Fotoquímica , Solventes/química , Análisis Espectral
17.
Biophys J ; 120(3): 568-575, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347887

RESUMEN

We investigated the temperature-dependent kinetics of the light-driven Na+ pump Krokinobacter rhodopsin 2 (KR2) at Na+-pumping conditions. The recorded microsecond flash photolysis data were subjected to detailed global target analysis, employing Eyring constraints and spectral decomposition. The analysis resulted in the kinetic rates, the composition of the different photocycle equilibria, and the spectra of the involved photointermediates. Our results show that with the temperature increase (from 10 to 40°C), the overall photocycle duration is accelerated by a factor of 6, with the L-to-M transition exhibiting an impressive 40-fold increase. It follows from the analysis that in KR2 the chromophore and the protein scaffold are more kinetically decoupled than in other microbial rhodopsins. We link this effect to the rigidity of the retinal protein environment. This kinetic decoupling should be considered in future studies and could potentially be exploited for fine-tuning biotechnological applications.


Asunto(s)
Flavobacteriaceae , Rodopsina , Cinética , Luz , Rodopsinas Microbianas , Temperatura
18.
J Am Chem Soc ; 143(28): 10596-10603, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34236854

RESUMEN

Photocleavable protecting groups (PPGs) play a pivotal role in numerous studies. They enable controlled release of small effector molecules to induce biochemical function. The number of PPGs attached to a variety of effector molecules has grown rapidly in recent years satisfying the high demand for new applications. However, until now molecules carrying PPGs have been designed to activate function only in a single direction, namely the release of the effector molecule. Herein, we present the new approach Two-PPGs-One-Molecule (TPOM) that exploits the orthogonal photolysis of two photoprotecting groups to first release the effector molecule and then to modify it to suppress its induced effect. The moiety resembling the tyrosyl side chain of the translation inhibitor puromycin was synthetically modified to the photosensitive ortho-nitrophenylalanine that cyclizes upon near UV-irradiation to an inactive puromycin cinnoline derivative. Additionally, the modified puromycin analog was protected by the thio-coumarylmethyl group as the second PPG. This TPOM strategy allows an initial wavelength-selective activation followed by a second light-induced deactivation. Both photolysis processes were spectroscopically studied in the UV/vis- and IR-region. In combination with quantum-chemical calculations and time-resolved NMR spectroscopy, the photoproducts of both activation and deactivation steps upon illumination were characterized. We further probed the translation inhibition effect of the new synthesized puromycin analog upon light activation/deactivation in a cell-free GFP translation assay. TPOM as a new method for precise triggering activation/deactivation of effector molecules represents a valuable addition for the control of biological processes with light.

19.
Chemistry ; 27(35): 9160-9173, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33929051

RESUMEN

Photoacids attract increasing scientific attention, as they are valuable tools to spatiotemporally control proton-release reactions and pH values of solutions. We present the first time-resolved spectroscopic study of the excited state and proton-release dynamics of prominent merocyanine representatives. Femtosecond transient absorption measurements of a pyridine merocyanine with two distinct protonation sites revealed dissimilar proton-release mechanisms: one site acts as a photoacid generator as its pKa value is modulated in the ground state after photoisomerization, while the other functions as an excited state photoacid which releases its proton within 1.1 ps. With a pKa drop of 8.7 units to -5.5 upon excitation, the latter phenolic site is regarded a super-photoacid. The 6-nitro derivative exhibits only a phenolic site with similar, yet slightly less photoacidic characteristics and both compounds transfer their proton to methanol and ethanol. In contrast, for the related 6,8-dinitro compound an intramolecular proton transfer to the ortho-nitro group is suggested that is involved in a rapid relaxation into the ground state.


Asunto(s)
Benzopiranos , Protones , Indoles , Metanol
20.
Chemistry ; 27(56): 14121-14127, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34363415

RESUMEN

Photoactivatable compounds for example photoswitches or photolabile protecting groups (PPGs, photocages) for spatiotemporal light control, play a crucial role in different areas of research. For each application, parameters such as the absorption spectrum, solubility in the respective media and/or photochemical quantum yields for several competing processes need to be optimized. The design of new photochemical tools therefore remains an important task. In this study, we exploited the concept of excited-state-aromaticity, first described by N. Colin Baird in 1971, to investigate a new class of photocages, based on cyclic, ground-state-antiaromatic systems. Several thio- and nitrogen-functionalized compounds were synthesized, photochemically characterized and further optimized, supported by quantum chemical calculations. After choosing the optimal scaffold, which shows an excellent uncaging quantum yield of 28 %, we achieved a bathochromic shift of over 100 nm, resulting in a robust, well accessible, visible light absorbing, compact new photocage with a clean photoreaction and a high quantum product (ϵ⋅Φ) of 893 M-1 cm-1 at 405 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA