Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38383722

RESUMEN

In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the "inside-out" pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning ("outside-in"). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Neuronas , Humanos , Animales , Masculino , Femenino , Ratones , Moléculas de Adhesión Celular Neuronal/metabolismo , Neuronas/fisiología , Corteza Cerebral/metabolismo , Fenotipo , Proteínas de la Matriz Extracelular/genética , Movimiento Celular/fisiología , Mamíferos/metabolismo
2.
Cereb Cortex ; 30(3): 1688-1707, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31667489

RESUMEN

Reelin is an extracellular matrix protein, known for its dual role in neuronal migration during brain development and in synaptic plasticity at adult stages. During the perinatal phase, Reelin expression switches from Cajal-Retzius (CR) cells, its main source before birth, to inhibitory interneurons (IN), the main source of Reelin in the adult forebrain. IN-derived Reelin has been associated with schizophrenia and temporal lobe epilepsy; however, the functional role of Reelin from INs is presently unclear. In this study, we used conditional knockout mice, which lack Reelin expression specifically in inhibitory INs, leading to a substantial reduction in total Reelin expression in the neocortex and dentate gyrus. Our results show that IN-specific Reelin knockout mice exhibit normal neuronal layering and normal behavior, including spatial reference memory. Although INs are the major source of Reelin within the adult stem cell niche, Reelin from INs does not contribute substantially to normal adult neurogenesis. While a closer look at the dentate gyrus revealed some unexpected alterations at the cellular level, including an increase in the number of Reelin expressing CR cells, overall our data suggest that Reelin derived from INs is less critical for cortex development and function than Reelin expressed by CR cells.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Giro Dentado/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Conducta Animal/fisiología , Movimiento Celular/fisiología , Giro Dentado/fisiopatología , Hipocampo/metabolismo , Interneuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Neuronas/metabolismo , Hojas de la Planta/metabolismo , Proteína Reelina
3.
Cereb Cortex ; 27(10): 4851-4866, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27620977

RESUMEN

Layer IV (LIV) of the rodent somatosensory cortex contains the somatotopic barrel field. Barrels receive much of the sensory input to the cortex through innervation by thalamocortical axons from the ventral posteromedial nucleus. In the reeler mouse, the absence of cortical layers results in the formation of mispositioned barrel-equivalent clusters of LIV fated neurons. Although functional imaging suggests that sensory input activates the cortex, little is known about the cellular and synaptic properties of identified excitatory neurons of the reeler cortex. We examined the properties of thalamic input to spiny stellate (SpS) neurons in the reeler cortex with in vitro electrophysiology, optogenetics, and subcellular channelrhodopsin-2-assisted circuit mapping (sCRACM). Our results indicate that reeler SpS neurons receive direct but weakened input from the thalamus, with a dispersed spatial distribution along the somatodendritic arbor. These results further document subtle alterations in functional connectivity concomitant of absent layering in the reeler mutant. We suggest that intracortical amplification mechanisms compensate for this weakening in order to allow reliable sensory transmission to the mutant neocortex.


Asunto(s)
Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Ratones Transgénicos , Neocórtex/fisiología , Neuronas/fisiología , Optogenética/métodos , Núcleos Talámicos Ventrales/fisiología
4.
Cereb Cortex ; 26(2): 820-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26564256

RESUMEN

Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory "barrel" cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position.


Asunto(s)
Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/clasificación , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteína Reelina , Corteza Somatosensorial/metabolismo
5.
Cereb Cortex ; 25(9): 2517-28, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24759695

RESUMEN

In rodents, layer IV of the primary somatosensory cortex contains the barrel field, where individual, large facial whiskers are represented as a dense cluster of cells. In the reeler mouse, a model of disturbed cortical development characterized by a loss of cortical lamination, the barrel field exists in a distorted manner. Little is known about the consequences of such a highly disturbed lamination on cortical function in this model. We used in vivo intrinsic signal optical imaging together with piezo-controlled whisker stimulation to explore sensory map organization and stimulus representation in the barrel field. We found that the loss of cortical layers in reeler mice had surprisingly little incidence on these properties. The overall topological order of whisker representations is highly preserved and the functional activation of individual whisker representations is similar in size and strength to wild-type controls. Because intrinsic imaging measures hemodynamic signals, we furthermore investigated the cortical blood vessel pattern of both genotypes, where we also did not detect major differences. In summary, the loss of the reelin protein results in a widespread disturbance of cortical development which compromises neither the establishment nor the function of an ordered, somatotopic map of the facial whiskers.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Malformaciones del Desarrollo Cortical/patología , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiopatología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Imagenología Tridimensional , Malformaciones del Desarrollo Cortical/genética , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Optogenética , Estimulación Física , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteína Reelina , Factores de Tiempo , Vibrisas/inervación
6.
Cereb Cortex ; 25(12): 4854-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26420784

RESUMEN

Neocortical GABAergic interneurons have a profound impact on cortical circuitry and its information processing capacity. Distinct subgroups of inhibitory interneurons can be distinguished by molecular markers, such as parvalbumin, somatostatin, and vasoactive intestinal polypeptide (VIP). Among these, VIP-expressing interneurons sparked a substantial interest since these neurons seem to operate disinhibitory circuit motifs found in all major neocortical areas. Several of these recent studies used transgenic Vip-ires-cre mice to specifically target the population of VIP-expressing interneurons. This makes it necessary to elucidate in detail the sensitivity and specificity of Cre expression for VIP neurons in these animals. Thus, we quantitatively compared endogenous tdTomato with Vip fluorescence in situ hybridization and αVIP immunohistochemistry in the barrel cortex of VIPcre/tdTomato mice in a layer-specific manner. We show that VIPcre/tdTomato mice are highly sensitive and specific for the entire population of VIP-expressing neurons. In the barrel cortex, approximately 13% of all GABAergic neurons are VIP expressing. Most VIP neurons are found in layer II/III (∼60%), whereas approximately 40% are found in the other layers of the barrel cortex. Layer II/III VIP neurons are significantly different from VIP neurons in layers IV-VI in several morphological and membrane properties, which suggest layer-dependent differences in functionality.


Asunto(s)
Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Potenciales de Acción , Animales , Axones , Dendritas , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ/métodos , Ratones , Ratones Transgénicos , Parvalbúminas/metabolismo , ARN Mensajero/metabolismo , Somatostatina/metabolismo
7.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320988

RESUMEN

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioma/genética , Neoplasias Encefálicas/genética , Proteína 1 Similar a Quitinasa-3
8.
J Neurosci ; 30(46): 15700-9, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21084626

RESUMEN

Sensory information acquired via the large facial whiskers is processed and relayed in the whisker-to-barrel pathway, which shows multiple somatotopic maps of the receptor periphery. These maps consist of individual structural modules, the development of which may require intact cortical lamination. In the present study we examined the whisker-to-barrel pathway in the reeler mouse and thus used a model with disturbed cortical organization. A combination of histological (fluorescent Nissl and cytochrome oxidase staining) as well as molecular methods (c-Fos and laminar markers Rgs8, RORB, and ER81 expression) revealed wild type-equivalent modules in reeler. At the neocortical level, however, we found extensive alterations in the layout of the individual modules of the map. Nevertheless, they showed a columnar organization that included compartments equivalent to those of their wild-type counterparts. Moreover, all examined modules showed distinct activation as a consequence of behavioral whisker stimulation. Analysis of the magnitude of the cortical lamination defect surprisingly revealed an extensive disorganization, rather than an inversion, as assumed previously. Striking developmental plasticity of thalamic innervation, as suggested by vGluT2 immunohistochemistry, seems to ensure the proper formation of columnar modules and topological maps even under highly disorganized conditions.


Asunto(s)
Conducta Animal/fisiología , Mapeo Encefálico , Plasticidad Neuronal/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Mapeo Encefálico/métodos , Femenino , Masculino , Ratones , Ratones Mutantes Neurológicos , Vías Nerviosas/citología , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Corteza Somatosensorial/patología
9.
Clin Cancer Res ; 26(7): 1535-1537, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32034079

RESUMEN

The present ReACT trial provides data from a small randomized controlled vaccination trial that in addition to other recent immunotherapy trials in glioblastoma allows sketching a rational, advanced trial design for the development of (immune) therapies in glioblastoma elaborating on but not restricting to biological monitoring and endpoints.See related article by Reardon et al., p. 1586.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Bevacizumab , Vacunas contra el Cáncer , Método Doble Ciego , Receptores ErbB , Humanos , Inmunoterapia , Pacientes , Vacunas de Subunidad
10.
Nat Commun ; 8: 15878, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722015

RESUMEN

TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine-via α2ß2-containing nicotinic receptors-to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity.


Asunto(s)
Hipocampo/citología , Interneuronas/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Capsaicina/farmacología , Femenino , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones Noqueados , Plasticidad Neuronal , Nicotina/farmacología , Técnicas de Placa-Clamp , Ratas Wistar , Receptores Nicotínicos/metabolismo , Canales Catiónicos TRPV/genética
11.
Cell Rep ; 13(9): 1842-54, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655900

RESUMEN

BAF (Brg/Brm-associated factors) complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO) mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac), a global increase in repressive marks (H3K27me2/3), and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX) and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Factores de Transcripción/genética , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Corteza Cerebelosa/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA