Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 36: 191-218, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32663035

RESUMEN

Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.


Asunto(s)
Trampas Extracelulares/metabolismo , Animales , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Citosol/metabolismo , ADN/metabolismo , Humanos
2.
Proc Natl Acad Sci U S A ; 120(35): e2303814120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603754

RESUMEN

Neutrophil recruitment to sites of infection and inflammation is an essential process in the early innate immune response. Upon activation, a subset of neutrophils rapidly assembles the multiprotein complex known as the NLRP3 inflammasome. The NLRP3 inflammasome forms at the microtubule organizing center, which promotes the formation of interleukin (IL)-1ß and IL-18, essential cytokines in the immune response. We recently showed that mice deficient in NLRP3 (NLRP3-/-) have reduced neutrophil recruitment to the peritoneum in a model of thioglycolate-induced peritonitis. Here, we tested the hypothesis that this diminished recruitment could be, in part, the result of defects in neutrophil chemotaxis. We find that NLRP3-/- neutrophils show loss of cell polarization, as well as reduced directionality and velocity of migration toward increasing concentrations of leukotriene B4 (LTB4) in a chemotaxis assay in vitro, which was confirmed through intravital microscopy of neutrophil migration toward a laser-induced burn injury of the liver. Furthermore, pharmacologically blocking NLRP3 inflammasome assembly with MCC950 in vitro reduced directionality but preserved nondirectional movement, indicating that inflammasome assembly is specifically required for polarization and directional chemotaxis, but not cell motility per se. In support of this, pharmacological breakdown of the microtubule cytoskeleton via nocodazole treatment induced cell polarization and restored nondirectional cell migration in NLRP3-deficient neutrophils in the LTB4 gradient. Therefore, NLRP3 inflammasome assembly is required for establishment of cell polarity to guide the directional chemotactic migration of neutrophils.


Asunto(s)
Quimiotaxis , Leucotrieno B4 , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas , Leucotrieno B4/metabolismo , Neutrófilos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 42(9): 1103-1112, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35861953

RESUMEN

The activating interplay of thrombosis and inflammation (thromboinflammation) has been established as a major underlying pathway, driving not only cardiovascular disease but also autoimmune disease and most recently, COVID-19. Throughout the years, innate immune cells have emerged as important modulators of this process. As the most abundant white blood cell in humans, neutrophils are well-positioned to propel thromboinflammation. This includes their ability to trigger an organized cell death pathway with the release of decondensed chromatin structures called neutrophil extracellular traps. Decorated with histones and cytoplasmic and granular proteins, neutrophil extracellular traps exert cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. Distinct steps leading to extracellular DNA release (NETosis) require the activities of PAD4 (protein arginine deiminase 4) catalyzing citrullination of histones and are supported by neutrophil inflammasome. By linking the immunologic function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets, PAD4 activity holds important implications for understanding the processes that fuel thromboinflammation. We will also discuss mechanisms whereby vascular occlusion in thromboinflammation depends on the interaction of neutrophil extracellular traps with ultra-large VWF (von Willebrand Factor) and speculate on the importance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thromboinflammatory diseases including atherosclerosis and COVID-19.


Asunto(s)
Aterosclerosis , COVID-19 , Trampas Extracelulares , Trombosis , Aterosclerosis/metabolismo , Trampas Extracelulares/metabolismo , Histonas/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Neutrófilos/metabolismo , Tromboinflamación , Trombosis/etiología , Trombosis/metabolismo , Factor de von Willebrand/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(13): 7326-7337, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170015

RESUMEN

Neutrophil extracellular traps (NETs) are web-like DNA structures decorated with histones and cytotoxic proteins that are released by activated neutrophils to trap and neutralize pathogens during the innate immune response, but also form in and exacerbate sterile inflammation. Peptidylarginine deiminase 4 (PAD4) citrullinates histones and is required for NET formation (NETosis) in mouse neutrophils. While the in vivo impact of NETs is accumulating, the cellular events driving NETosis and the role of PAD4 in these events are unclear. We performed high-resolution time-lapse microscopy of mouse and human neutrophils and differentiated HL-60 neutrophil-like cells (dHL-60) labeled with fluorescent markers of organelles and stimulated with bacterial toxins or Candida albicans to induce NETosis. Upon stimulation, cells exhibited rapid disassembly of the actin cytoskeleton, followed by shedding of plasma membrane microvesicles, disassembly and remodeling of the microtubule and vimentin cytoskeletons, ER vesiculation, chromatin decondensation and nuclear rounding, progressive plasma membrane and nuclear envelope (NE) permeabilization, nuclear lamin meshwork and then NE rupture to release DNA into the cytoplasm, and finally plasma membrane rupture and discharge of extracellular DNA. Inhibition of actin disassembly blocked NET release. Mouse and dHL-60 cells bearing genetic alteration of PAD4 showed that chromatin decondensation, lamin meshwork and NE rupture and extracellular DNA release required the enzymatic and nuclear localization activities of PAD4. Thus, NETosis proceeds by a stepwise sequence of cellular events culminating in the PAD4-mediated expulsion of DNA.


Asunto(s)
Trampas Extracelulares/inmunología , Neutrófilos/inmunología , Arginina Deiminasa Proteína-Tipo 4/inmunología , Animales , Cromatina/inmunología , Citoesqueleto/inmunología , ADN/inmunología , ADN/metabolismo , Trampas Extracelulares/metabolismo , Células HL-60 , Histonas/inmunología , Humanos , Inmunidad Innata , Inflamación/inmunología , Ratones , Microtúbulos/inmunología , Activación Neutrófila/inmunología , Neutrófilos/metabolismo , Membrana Nuclear/inmunología
5.
Blood ; 134(17): 1458-1468, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31300403

RESUMEN

Deep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state. Moreover, RvD4 promoted the biosynthesis of other D-series resolvins involved in facilitating resolution of inflammation. Neutrophils from RvD4-treated mice were less susceptible to an ionomycin-induced release of neutrophil extracellular traps (NETs), a meshwork of decondensed chromatin lined with histones and neutrophil proteins critical for DVT development. These results suggest that delivery of SPMs, specifically RvD4, modulates the severity of thrombo-inflammatory disease in vivo and improves thrombus resolution.


Asunto(s)
Ácidos Grasos Insaturados/uso terapéutico , Trombosis de la Vena/tratamiento farmacológico , Animales , Progresión de la Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Mediadores de Inflamación/inmunología , Lípidos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Trombosis de la Vena/inmunología , Trombosis de la Vena/patología
6.
Circ Res ; 125(4): 470-488, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31518165

RESUMEN

Neutrophils play a central role in innate immune defense. Advances in neutrophil biology have brought to light the capacity of neutrophils to release their decondensed chromatin and form large extracellular DNA networks called neutrophil extracellular traps (NETs). NETs are produced in response to many infectious and noninfectious stimuli and, together with fibrin, block the invasion of pathogens. However, their formation in inflamed blood vessels produces a scaffold that supports thrombosis, generates neo-antigens favoring autoimmunity, and aggravates damage in ischemia/reperfusion injury. NET formation can also be induced by cancer and promotes tumor progression. Formation of NETs within organs can be immediately detrimental, such as in lung alveoli, where they affect respiration, or they can be harmful over longer periods of time. For example, NETs initiate excessive deposition of collagen, resulting in fibrosis, thus likely contributing to heart failure. Here, we summarize the latest knowledge on NET generation and discuss how excessive NET formation mediates propagation of thrombosis and inflammation and, thereby, contributes to various diseases. There are many ways in which NET formation could be averted or NETs neutralized to prevent their detrimental consequences, and we will provide an overview of these possibilities.


Asunto(s)
Aterosclerosis/etiología , Enfermedades Autoinmunes/etiología , Trampas Extracelulares/inmunología , Enfermedades Pulmonares/etiología , Trombosis/etiología , Animales , Trampas Extracelulares/enzimología , Trampas Extracelulares/genética , Humanos , Metaboloma
7.
Circ Res ; 125(5): 507-519, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31248335

RESUMEN

RATIONALE: PAD4 (peptidylarginine deiminase type IV), an enzyme essential for neutrophil extracellular trap formation (NETosis), is released together with neutrophil extracellular traps into the extracellular milieu. It citrullinates histones and holds the potential to citrullinate other protein targets. While NETosis is implicated in thrombosis, the impact of the released PAD4 is unknown. OBJECTIVE: This study tests the hypothesis that extracellular PAD4, released during inflammatory responses, citrullinates plasma proteins, thus affecting thrombus formation. METHODS AND RESULTS: Here, we show that injection of r-huPAD4 in vivo induces the formation of VWF (von Willebrand factor)-platelet strings in mesenteric venules and that this is dependent on PAD4 enzymatic activity. VWF-platelet strings are naturally cleaved by ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type-1 motif-13). We detected a reduction of endogenous ADAMTS13 activity in the plasma of wild-type mice injected with r-huPAD4. Using mass spectrometry and in vitro studies, we found that r-huPAD4 citrullinates ADAMTS13 on specific arginine residues and that this modification dramatically inhibits ADAMTS13 enzymatic activity. Elevated citrullination of ADAMTS13 was observed in plasma samples of patients with sepsis or noninfected patients who were elderly (eg, age >65 years) and had underlying comorbidities (eg, diabetes mellitus and hypertension) as compared with healthy donors. This shows that ADAMTS13 is citrullinated in vivo. VWF-platelet strings that form on venules of Adamts13-/- mice were immediately cleared after injection of r-huADAMTS13, while they persisted in vessels of mice injected with citrullinated r-huADAMTS13. Next, we assessed the effect of extracellular PAD4 on platelet-plug formation after ferric chloride-induced injury of mesenteric venules. Administration of r-huPAD4 decreased time to vessel occlusion and significantly reduced thrombus embolization. CONCLUSIONS: Our data indicate that PAD4 in circulation reduces VWF-platelet string clearance and accelerates the formation of a stable platelet plug after vessel injury. We propose that this effect is, at least in part, due to ADAMTS13 inhibition.


Asunto(s)
Plaquetas/metabolismo , Arginina Deiminasa Proteína-Tipo 4/sangre , Trombosis/sangre , Lesiones del Sistema Vascular/sangre , Factor de von Willebrand/metabolismo , Anciano , Animales , Plaquetas/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Arginina Deiminasa Proteína-Tipo 4/toxicidad , Trombosis/inducido químicamente , Lesiones del Sistema Vascular/inducido químicamente , Adulto Joven
8.
Am J Transplant ; 20(4): 1162-1169, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31730284

RESUMEN

Enhancing skin allograft longevity lessens the need for new allografts before optimal intervention is available. Reduced activity of ADAMTS13 (an enzyme that cleaves the pro-thrombotic and proinflammatory von Willebrand factor) and presence of neutrophil extracellular traps (NETs) have been implicated in liver and lung allograft failures. The effect of ADAMTS13 treatment and the impact of NETs on skin allografts, however, remain unexplored. Here, we adopted a murine model of complete mismatch full-thickness skin transplant by grafting dorsal skin from BALB/c mice to C57BL/6J background mice. Recombinant human ADAMTS13 (rhADAMTS13) treatment of graft recipients increased allograft survival. Western blot and immunofluorescence microscopy revealed the presence of NETs in allografts of vehicle, but surprisingly, not in rhADAMTS13-treated mice, 3 days after surgery. Recapitulating the observations in mice, NETs were also observed in all the examined allografts from burn patients. Intriguingly, knocking out peptidylarginine deiminase 4 (PAD4, a key enzyme for NET formation) or DNase 1 treatment (which cleaves NETs) also prolonged allograft survival. In summary, rhADAMTS13 lessens inflammation in allografts by reducing NET burden, resulting in enhanced allograft survival. RhADAMTS13 and anti-NET treatments could be new therapeutic strategies to promote skin allograft longevity and, hence, the survival of patients with severe burns.


Asunto(s)
Supervivencia de Injerto , Factor de von Willebrand , Proteína ADAMTS13 , Aloinjertos , Animales , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/prevención & control , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante Homólogo
9.
FASEB J ; : fj201800691R, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29924943

RESUMEN

Peptidylarginine deiminase 4 (PAD4) is a nuclear citrullinating enzyme that is critically involved in the release of decondensed chromatin from neutrophils as neutrophil extracellular traps (NETs). NETs, together with fibrin, are implicated in host defense against pathogens; however, the formation of NETs (NETosis) has injurious effects that may outweigh their protective role. For example, PAD4 activity produces citrullinated neoantigens that promote autoimmune diseases, such as rheumatoid arthritis, to which PAD4 is genetically linked and where NETosis is prominent. NETs are also generated in basic sterile inflammatory responses that are induced by many inflammatory stimuli, including cytokines, hypoxia, and activated platelets. Mice that lack PAD4-deficient in NETosis-serve as an excellent tool with which to study the importance of NETs in disease models. In recent years, animal and human studies have demonstrated that NETs contribute to the etiology and propagation of many common noninfectious diseases, the focus of our review. We will discuss the role of NETs in thrombotic and cardiovascular disease, the induction of NETs by cancers and its implications for cancer progression and cancer-associated thrombosis, and elevated NETosis in diabetes and its negative impact on wound healing, and will propose a link between PAD4/NETs and age-related organ fibrosis. We identify unresolved issues and new research directions.-Wong, S. L., Wagner, D. D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging.

10.
Circ Res ; 121(8): 941-950, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28739590

RESUMEN

RATIONALE: Deep vein thrombosis (DVT) and its complication pulmonary embolism have high morbidity reducing quality of life and leading to death. Cellular mechanisms of DVT initiation remain poorly understood. OBJECTIVE: We sought to determine the role of mast cells (MCs) in DVT initiation and validate MCs as a potential target for DVT prevention. METHODS AND RESULTS: In a mouse model, DVT was induced by partial ligation (stenosis) of the inferior vena cava. We demonstrated that 2 strains of mice deficient for MCs were completely protected from DVT. Adoptive transfer of in vitro differentiated MCs restored thrombosis. MCs were present in the venous wall, and the number of granule-containing MCs decreased with thrombosis. Pharmacological depletion of MCs granules or prevention of MC degranulation also reduced DVT. Basal plasma levels of von Willebrand factor and recruitment of platelets to the inferior vena cava wall after DVT induction were reduced in MC-deficient mice. Stenosis application increased plasma levels of soluble P-selectin in wild-type but not in MC-deficient mice. MC releasate elevated ICAM-1 (intercellular adhesion molecule-1) expression on HUVEC (human umbilical vein endothelial cells) in vitro. Topical application of compound 48/80, an MC secretagogue, or histamine, a Weibel-Palade body secretagogue from MCs, potentiated DVT in wild-type mice, and histamine restored thrombosis in MC-deficient animals. CONCLUSIONS: MCs exacerbate DVT likely through endothelial activation and Weibel-Palade body release, which is, at least in part, mediated by histamine. Because MCs do not directly contribute to normal hemostasis, they can be considered potential targets for prevention of DVT in humans.


Asunto(s)
Coagulación Sanguínea , Degranulación de la Célula , Histamina/metabolismo , Mastocitos/metabolismo , Vena Cava Inferior/metabolismo , Trombosis de la Vena/metabolismo , Traslado Adoptivo , Animales , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Degranulación de la Célula/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibrinolíticos/farmacología , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Ligadura , Mastocitos/efectos de los fármacos , Mastocitos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Proto-Oncogénicas c-kit/deficiencia , Proteínas Proto-Oncogénicas c-kit/genética , Selenoproteína P/metabolismo , Transducción de Señal , Vena Cava Inferior/efectos de los fármacos , Vena Cava Inferior/cirugía , Trombosis de la Vena/sangre , Trombosis de la Vena/genética , Trombosis de la Vena/prevención & control , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/metabolismo
11.
Blood ; 128(5): 721-31, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27252233

RESUMEN

Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIa(MZ)). FIIa(MZ) has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIa(MZ), mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIa(MZ) Homozygous fII(MZ) mice are viable, express fII levels comparable with fII(WT) mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIa(MZ) enzyme activity, platelet aggregation by fII(MZ) is similar to fII(WT) Consistent with prior analyses of human fIIa(MZ), significant prolongation of clotting times was observed for fII(MZ) plasma. Adult fII(MZ) animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fII(MZ) mice had 2 significant phenotypic advantages over fII(WT) animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIa(MZ) in vivo.


Asunto(s)
Precursores Enzimáticos/metabolismo , Hemostasis , Protrombina/metabolismo , Trombina/metabolismo , Alelos , Animales , Coagulación Sanguínea , Retracción del Coagulo , Venenos de Crotálidos , Embrión de Mamíferos/metabolismo , Fibrosis , Metaloendopeptidasas , Ratones Endogámicos C57BL , Miocardio/patología , Metástasis de la Neoplasia , Agregación Plaquetaria , Análisis de Supervivencia , Trombosis/metabolismo , Trombosis/patología
13.
Am J Hematol ; 93(2): 269-276, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29124783

RESUMEN

NET formation in mice (NETosis) is supported by reactive oxygen species (ROS) production by NADPH oxidase and histone hypercitrullination by peptidylarginine deiminase 4 (PAD4). Rac1 and Rac2, expressed in polymorphonuclear neutrophils (PMNs), regulate the cytoskeleton, cell shape, adhesion, and migration and are also essential components of the NADPH oxidase complex. We aimed to explore the role of the Rac signaling pathway including the upstream guanosine exchange factor (GEF) activator, Vav, and a downstream effector, the p21-activated kinase, Pak, on NETosis in PMNs using a previously described flow-cytometry-based assay. Rac2-/- PMNs showed reduced levels of citrullinated histone H3 (H3Cit)-positive cells and defective NETosis. Rac1Δ/Δ ; Rac2-/- PMNs demonstrated a further reduction in PMA-induced H3Cit levels and a more profound impairment of NETosis than deletion of Rac2 alone, suggesting an overlapping role of these two highly related proteins. Genetic knockouts of Vav1, or Vav2, did not impair H3Cit response to phorbol myristate ester (PMA) or NETosis. Combined, Vav1 and Vav3 deletions decreased H3Cit response and caused a modest but significant impairment of NETosis. Pharmacologic inhibition of Pak by two inhibitors with distinct mechanisms of action, led to reduced H3Cit levels after PMA stimulation, as well as significant inhibition of NETosis. We validated the importance of Pak using Pak2Δ/Δ PMNs, which demonstrated significantly impaired histone H3 citrullination and NETosis. These data confirm and more comprehensively define the key role of the Rac signaling pathway in PMN NETosis. The Rac signaling cascade may represent a valuable target for inhibition of NETosis and related pathological processes.


Asunto(s)
Trampas Extracelulares/metabolismo , Transducción de Señal , Quinasas p21 Activadas/fisiología , Proteínas de Unión al GTP rac/fisiología , Animales , Citrulinación , Histonas/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/metabolismo
15.
Blood ; 126(2): 242-6, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25979951

RESUMEN

Neutrophil extracellular traps (NETs) can be released in the vasculature. In addition to trapping microbes, they promote inflammatory and thrombotic diseases. Considering that P-selectin induces prothrombotic and proinflammatory signaling, we studied the role of this selectin in NET formation. NET formation (NETosis) was induced by thrombin-activated platelets rosetting with neutrophils and was inhibited by anti-P-selectin aptamer or anti-P-selectin glycoprotein ligand-1 (PSGL-1) inhibitory antibody but was not induced by platelets from P-selectin(-/-) mice. Moreover, NETosis was also promoted by P-selectin-immunoglobulin fusion protein but not by control immunoglobulin. We isolated neutrophils from mice engineered to overproduce soluble P-selectin (P-selectin(ΔCT/ΔCT) mice). Although the levels of circulating DNA and nucleosomes (indicative of spontaneous NETosis) were normal in these mice, basal neutrophil histone citrullination and presence of P-selectin on circulating neutrophils were elevated. NET formation after stimulation with platelet activating factor, ionomycin, or phorbol 12-myristate 13-acetate was significantly enhanced, indicating that the P-selectin(ΔCT/ΔCT) neutrophils were primed for NETosis. In summary, P-selectin, cellular or soluble, through binding to PSGL-1, promotes NETosis, suggesting that this pathway is a potential therapeutic target for NET-related diseases.


Asunto(s)
Trampas Extracelulares/genética , Selectina-P/fisiología , Trombosis/genética , Vasculitis/genética , Animales , Plaquetas/fisiología , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Selectina-P/genética , Selectina-P/farmacología , Activación Plaquetaria/genética , Proteínas Recombinantes de Fusión/farmacología , Trombosis/patología , Vasculitis/patología
16.
Blood ; 125(12): 1948-56, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25624317

RESUMEN

Neutrophil extracellular traps (NETs), consisting of nuclear DNA with histones and microbicidal proteins, are expelled from activated neutrophils during sepsis. NETs were shown to trap microbes, but they also fuel cardiovascular, thrombotic, and autoimmune disease. The role of NETs in sepsis, particularly the balance between their antimicrobial and cytotoxic actions, remains unclear. Neutrophils from peptidylarginine deiminase 4-(PAD4(-/-)) deficient mice, which lack the enzyme allowing for chromatin decondensation and NET formation, were evaluated. We found that neutrophil functions involved in bacterial killing, other than NETosis, remained intact. Therefore, we hypothesized that prevention of NET formation might not have devastating consequences in sepsis. To test this, we subjected the PAD4(-/-) mice to mild and severe polymicrobial sepsis produced by cecal ligation and puncture. Surprisingly, under septic conditions, PAD4(-/-) mice did not fare worse than wild-type mice and had comparable survival. In the presence of antibiotics, PAD4-deficiency resulted in slightly accelerated mortality but bacteremia was unaffected. PAD4(-/-) mice were partially protected from lipopolysaccharide-induced shock, suggesting that PAD4/NETs may contribute to the toxic inflammatory and procoagulant host response to endotoxin. We propose that preventing NET formation by PAD4 inhibition in inflammatory or thrombotic diseases is not likely to increase host vulnerability to bacterial infections.


Asunto(s)
Endotoxemia/microbiología , Hidrolasas/metabolismo , Sepsis/microbiología , Animales , Antibacterianos/uso terapéutico , Bacteriemia/inmunología , Cruzamientos Genéticos , Citometría de Flujo , Histonas/metabolismo , Hidrolasas/genética , Inflamación , Lipopolisacáridos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila/inmunología , Neutrófilos/metabolismo , Peritonitis/microbiología , Arginina Deiminasa Proteína-Tipo 4
17.
Nat Chem Biol ; 11(3): 189-91, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25622091

RESUMEN

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.


Asunto(s)
Bencimidazoles/farmacología , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Neutrófilos/efectos de los fármacos , Animales , Bencimidazoles/síntesis química , Unión Competitiva , Calcio/metabolismo , Citrulina/metabolismo , Inhibidores Enzimáticos/síntesis química , Células HEK293 , Histonas/metabolismo , Humanos , Técnicas In Vitro , Ratones , Modelos Moleculares , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Bibliotecas de Moléculas Pequeñas , Especificidad por Sustrato
18.
J Am Soc Nephrol ; 27(1): 120-31, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26038528

RESUMEN

Thrombotic microangiopathy (TMA) is a life-threatening condition that affects some, but not all, recipients of vascular endothelial growth factor (VEGF) inhibitors given as part of chemotherapy. TMA is also a complication of preeclampsia, a disease characterized by excess production of the VEGF-scavenging soluble VEGF receptor 1 (soluble fms-like tyrosine kinase 1; sFlt-1). Risk factors for VEGF inhibitor-related TMA remain unknown. We hypothesized that deficiency of the VWF-cleaving ADAMTS13 endopeptidase contributes to the development of VEGF inhibitor-related TMA. ADAMTS13(-/-) mice overexpressing sFlt-1 presented all hallmarks of TMA, including thrombocytopenia, schistocytosis, anemia, and VWF-positive microthrombi in multiple organs. Similar to VEGF inhibitor-related TMA in humans, these mice exhibited severely impaired kidney function and hypertension. In contrast, wild-type mice overexpressing sFlt-1 developed modest hypertension but no other features of TMA. Recombinant ADAMTS13 therapy ameliorated all symptoms of TMA in ADAMTS13(-/-) mice overexpressing sFlt-1 and normalized BP in wild-type mice. ADAMTS13 activity may thus be a critical determinant for the development of TMA secondary to VEGF inhibition. Administration of recombinant ADAMTS13 may serve as a therapeutic approach to treat or prevent thrombotic complications of VEGF inhibition.


Asunto(s)
Metaloendopeptidasas/fisiología , Microangiopatías Trombóticas/etiología , Microangiopatías Trombóticas/prevención & control , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteína ADAMTS13 , Animales , Ratones , Ratones Endogámicos C57BL , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología
19.
Biol Reprod ; 95(6): 132, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28007693

RESUMEN

Inflammation is thought to play a critical role in the pathogenesis of placentation disorders such as recurrent miscarriages, growth restriction, and preeclampsia. Recently, neutrophil extracellular traps (NETs) have emerged as a potential mechanism for promoting inflammation in both infectious and noninfectious disorders. To investigate a pathogenic role for NETs in placentation disorders, we studied a model of antiangiogenic factor-mediated pregnancy loss in wild-type (WT) mice and in mice deficient in peptidylarginine deiminase 4 (Padi4-/-) that are unable to form NETs. Overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1), an antiangiogenic protein that is pathogenically linked with abnormal placentation disorders during early gestation, resulted in pregnancy loss and large accumulation of neutrophils and NETs in WT placentas. Interestingly, sFlt-1 overexpression in Padi4-/- mice resulted in dramatically lower inflammatory and thrombotic response, which was accompanied by significant reduction in pregnancy losses. Inhibition of NETosis may serve as a novel target in disorders of impaired placentation.


Asunto(s)
Aborto Espontáneo/metabolismo , Trampas Extracelulares/metabolismo , Hidrolasas/metabolismo , Inflamación/metabolismo , Aborto Espontáneo/genética , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Trampas Extracelulares/genética , Femenino , Hidrolasas/genética , Inflamación/genética , Ratones , Ratones Noqueados , Neutrófilos/metabolismo , Placenta/metabolismo , Embarazo , Arginina Deiminasa Proteína-Tipo 4 , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
20.
Blood ; 123(18): 2768-76, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24366358

RESUMEN

The contributions by blood cells to pathological venous thrombosis were only recently appreciated. Both platelets and neutrophils are now recognized as crucial for thrombus initiation and progression. Here we review the most recent findings regarding the role of neutrophil extracellular traps (NETs) in thrombosis. We describe the biological process of NET formation (NETosis) and how the extracellular release of DNA and protein components of NETs, such as histones and serine proteases, contributes to coagulation and platelet aggregation. Animal models have unveiled conditions in which NETs form and their relation to thrombogenesis. Genetically engineered mice enable further elucidation of the pathways contributing to NETosis at the molecular level. Peptidylarginine deiminase 4, an enzyme that mediates chromatin decondensation, was identified to regulate both NETosis and pathological thrombosis. A growing body of evidence reveals that NETs also form in human thrombosis and that NET biomarkers in plasma reflect disease activity. The cell biology of NETosis is still being actively characterized and may provide novel insights for the design of specific inhibitory therapeutics. After a review of the relevant literature, we propose new ways to approach thrombolysis and suggest potential prophylactic and therapeutic agents for thrombosis.


Asunto(s)
Trombosis/etiología , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/enzimología , Matriz Extracelular/metabolismo , Humanos , Ratones , Neoplasias/complicaciones , Neutrófilos/metabolismo , Terapia Trombolítica , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA