Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 494-506, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657842

RESUMEN

Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Encéfalo , Etanol , Neuronas , Estrés Oxidativo , Inhibidores de PCSK9 , Proproteína Convertasa 9 , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratas , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Inhibidores de PCSK9/farmacología , Proproteína Convertasa 9/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Alcoholismo/metabolismo , Alcoholismo/tratamiento farmacológico , Microglía/metabolismo , Microglía/efectos de los fármacos , Receptores de LDL/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
2.
Mol Psychiatry ; 27(9): 3875-3884, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35705636

RESUMEN

Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging; however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of DNAmTL on alcohol consumption was performed (N = 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD. DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition (p = 4.0 × 10-12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and smoking status (0.06 kilobases shorter per year, p = 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R = 0.3, p = 2.2 × 10-5), highlighting the accuracy of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p = 3.75 × 10-8). The allele C of rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in hippocampus tissue (p = 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions negatively affected by alcohol and implicated in aging.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Envejecimiento , Alcoholismo , Acortamiento del Telómero , Humanos , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Metilación de ADN/genética , Estudio de Asociación del Genoma Completo , Telómero/genética , Proteínas Adaptadoras Transductoras de Señales/genética
3.
Addict Biol ; 28(12): e13342, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017640

RESUMEN

Excessive alcohol consumption has detrimental effects on the entire organism, especially on the liver. The toxicity is partly dependent on age, as older individuals metabolize alcohol more slowly leading to increased cellular injury. This study aimed to investigate the effects of moderate binge drinking on the liver of young and aged mice in a genome-wide multi-omics approach. We determined DNA methylation (DNAm) using the Illumina MouseMethylation array and gene expression by RNA sequencing in 18 female Balb/c mice in a 2 × 2 design. The animals underwent three moderate binge drinking cycles (ethanol vs. vehicle) and liver tissue was harvested at 4 or 19 months of age. We tested differential gene expression (DE) and DNAm associated with ethanol intake in linear models separately in young and aged mice, performed enrichment analyses for pathways and GWAS signatures of problematic alcohol use, and analysed the overlap of DNAm and gene expression. We observed DE in young and aged animals and substantial overlap in genes such as Bhlhe40, Klf10, and Frmd8. DE genes in aged animals were enriched for biological processes related to alcohol metabolism, inflammation, liver fibrosis, and GWAS signatures of problematic alcohol use. We identified overlapping signatures from DNAm and gene expression, for example, Frmd8 in aged and St6galnac4 in young mice. This study offers converging evidence of novel age-related targets in a moderate alcohol consumption model highlighting dysregulations in genes related to alcohol metabolism, inflammation, and liver fibrosis. Future studies are needed to confirm these results and elucidate the underlying mechanisms.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Femenino , Animales , Ratones , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Multiómica , Etanol/farmacología , Consumo de Bebidas Alcohólicas/genética , Inflamación , Cirrosis Hepática
4.
PLoS Pathog ; 14(11): e1007424, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496289

RESUMEN

Transmissible spongiform encephalopathies (TSEs) are caused by the prion, which consists essentially of PrPSc, an aggregated, conformationally modified form of the cellular prion protein (PrPC). Although TSEs can be experimentally transmitted by intracerebral inoculation, most instances of infection in the field occur through extracerebral routes. The epidemics of kuru and variant Creutzfeldt-Jakob disease were caused by dietary exposure to prions, and parenteral administration of prion-contaminated hormones has caused hundreds of iatrogenic TSEs. In all these instances, the development of postexposure prophylaxis relies on understanding of how prions propagate from the site of entry to the brain. While much evidence points to lymphoreticular invasion followed by retrograde transfer through peripheral nerves, prions are present in the blood and may conceivably cross the blood-brain barrier directly. Here we have addressed the role of the blood-brain barrier (BBB) in prion disease propagation using Pdgfbret/ret mice which possess a highly permeable BBB. We found that Pdgfbret/ret mice have a similar prion disease incubation time as their littermate controls regardless of the route of prion transmission. These surprising results indicate that BBB permeability is irrelevant to the initiation of prion disease, even when prions are administered parenterally.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Animales , Transporte Biológico , Encéfalo/irrigación sanguínea , Encéfalo/patología , Bovinos , Síndrome de Creutzfeldt-Jakob/patología , Modelos Animales de Enfermedad , Encefalopatía Espongiforme Bovina/patología , Humanos , Ratones , Enfermedades por Prión/transmisión , Proteínas Priónicas/metabolismo , Priones/patogenicidad , Scrapie/patología
5.
Cell Mol Gastroenterol Hepatol ; 17(1): 29-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37703945

RESUMEN

BACKGROUND & AIMS: Observational studies have linked lipid-lowering drug targets pro-protein convertase subtilisin/kexin 9 (PCSK9) and HMG-CoA reductase (HMGCR) with adverse liver outcomes; however, liver disease incidence varies across diverse populations, and the long-term hepatic impact of these lipid-lowering drugs among non-white Europeans remains largely unknown. METHODS: We use single nucleotide polymorphisms (SNPs) in PCSK9 and HMGCR loci from genome-wide association study data of low-density lipoprotein cholesterol in 4 populations (East Asian [EAS], South Asian [SAS], African [AFR], and European [EUR]) to perform drug-target Mendelian randomization investigating relationships between PCSK9 and HMGCR inhibition and alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and bilirubin. RESULTS: Analyses of PCSK9 instruments, including functional variants R46L and E670G, failed to find evidence for relationships of low-density lipoprotein cholesterol lowering via PCSK9 variants and adverse effects on ALT, AST, GGT, or ALP among the cohorts. PCSK9 inhibition was associated with increased direct bilirubin levels in EUR (ß = 0.089; P value = 5.69 × 10-6) and, nominally, in AFR (ß = 0.181; P value = .044). HMGCR inhibition was associated with reduced AST in SAS (ß = -0.705; P value = .005) and, nominally, reduced AST in EAS (ß = -0.096; P value = .03), reduced ALP in EUR (ß = -2.078; P value = .014), and increased direct bilirubin in EUR (ß = 0.071; P value = .032). Sensitivity analyses using genetic instruments derived from circulating PCSK9 protein levels, tissue-specific PCSK9 expression, and HMGCR expression were in alignment, strengthening causal inference. CONCLUSIONS: We did not find ALT, AST, GGT, or ALP associated with genetically proxied PCSK9 and HMGCR inhibition across ancestries. We identified possible relationships in several ancestries between PCSK9 and increased direct and total bilirubin and between HMGCR and reduced AST. These findings support long-term safety profiles and low hepatotoxic risk of PCSK9 and HMGCR inhibition in diverse populations.


Asunto(s)
Proproteína Convertasa 9 , Subtilisina , Humanos , Proproteína Convertasa 9/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Hígado , Bilirrubina , Lipoproteínas LDL , Colesterol , Lípidos , Hidroximetilglutaril-CoA Reductasas/genética
6.
JAMA Psychiatry ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888899

RESUMEN

Importance: Observational studies suggest that major psychiatric disorders and substance use behaviors reduce longevity, making it difficult to disentangle their relationships with aging-related outcomes. Objective: To evaluate the associations between the genetic liabilities for major psychiatric disorders, substance use behaviors (smoking and alcohol consumption), and longevity. Design, Settings, and Participants: This 2-sample mendelian randomization (MR) study assessed associations between psychiatric disorders, substance use behaviors, and longevity using single-variable and multivariable models. Multiomics analyses were performed elucidating transcriptomic underpinnings of the MR associations and identifying potential proteomic therapeutic targets. This study sourced summary-level genome-wide association study (GWAS) data, gene expression, and proteomic data from cohorts of European ancestry. Analyses were performed from May 2022 to November 2023. Exposures: Genetic susceptibility for major depression (n = 500 199), bipolar disorder (n = 413 466), schizophrenia (n = 127 906), problematic alcohol use (n = 435 563), weekly alcohol consumption (n = 666 978), and lifetime smoking index (n = 462 690). Main Outcomes and Measures: The main outcome encompassed aspects of health span, lifespan, and exceptional longevity. Additional outcomes were epigenetic age acceleration (EAA) clocks. Results: Findings from multivariable MR models simultaneously assessing psychiatric disorders and substance use behaviorsm suggest a negative association between smoking and longevity in cohorts of European ancestry (n = 709 709; 431 503 [60.8%] female; ß, -0.33; 95% CI, -0.38 to -0.28; P = 4.59 × 10-34) and with increased EAA (n = 34 449; 18 017 [52.3%] female; eg, PhenoAge: ß, 1.76; 95% CI, 0.72 to 2.79; P = 8.83 × 10-4). Transcriptomic imputation and colocalization identified 249 genes associated with smoking, including 36 novel genes not captured by the original smoking GWAS. Enriched pathways included chromatin remodeling and telomere assembly and maintenance. The transcriptome-wide signature of smoking was inversely associated with longevity, and estimates of individual smoking-associated genes, eg, XRCC3 and PRMT6, aligned with the smoking-longevity MR analyses, suggesting underlying transcriptomic mediators. Cis-instrument MR prioritized brain proteins associated with smoking behavior, including LY6H (ß, 0.02; 95% CI, 0.01 to 0.03; P = 2.37 × 10-6) and RIT2 (ß, 0.02; 95% CI, 0.01 to 0.03; P = 1.05 × 10-5), which had favorable adverse-effect profiles across 367 traits evaluated in phenome-wide MR. Conclusions: The findings suggest that the genetic liability of smoking, but not of psychiatric disorders, is associated with longevity. Transcriptomic associations offer insights into smoking-related pathways, and identified proteomic targets may inform therapeutic development for smoking cessation strategies.

7.
Neurosci Biobehav Rev ; 149: 105155, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019248

RESUMEN

The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.


Asunto(s)
Lipoproteínas LDL , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Lipoproteínas LDL/metabolismo , Encéfalo/metabolismo , Subtilisinas/metabolismo
8.
Nat Commun ; 14(1): 2236, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076473

RESUMEN

Biological aging is accompanied by increasing morbidity, mortality, and healthcare costs; however, its molecular mechanisms are poorly understood. Here, we use multi-omic methods to integrate genomic, transcriptomic, and metabolomic data and identify biological associations with four measures of epigenetic age acceleration and a human longevity phenotype comprising healthspan, lifespan, and exceptional longevity (multivariate longevity). Using transcriptomic imputation, fine-mapping, and conditional analysis, we identify 22 high confidence associations with epigenetic age acceleration and seven with multivariate longevity. FLOT1, KPNA4, and TMX2 are novel, high confidence genes associated with epigenetic age acceleration. In parallel, cis-instrument Mendelian randomization of the druggable genome associates TPMT and NHLRC1 with epigenetic aging, supporting transcriptomic imputation findings. Metabolomics Mendelian randomization identifies a negative effect of non-high-density lipoprotein cholesterol and associated lipoproteins on multivariate longevity, but not epigenetic age acceleration. Finally, cell-type enrichment analysis implicates immune cells and precursors in epigenetic age acceleration and, more modestly, multivariate longevity. Follow-up Mendelian randomization of immune cell traits suggests lymphocyte subpopulations and lymphocytic surface molecules affect multivariate longevity and epigenetic age acceleration. Our results highlight druggable targets and biological pathways involved in aging and facilitate multi-omic comparisons of epigenetic clocks and human longevity.


Asunto(s)
Longevidad , Multiómica , Humanos , Longevidad/genética , Epigénesis Genética , Envejecimiento/genética , Fenotipo , Lipoproteínas/genética , Metilación de ADN/genética , Ubiquitina-Proteína Ligasas/genética , alfa Carioferinas/genética
9.
Nat Aging ; 3(8): 1020-1035, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550455

RESUMEN

The concept of aging is complex, including many related phenotypes such as healthspan, lifespan, extreme longevity, frailty and epigenetic aging, suggesting shared biological underpinnings; however, aging-related endpoints have been primarily assessed individually. Using data from these traits and multivariate genome-wide association study methods, we modeled their underlying genetic factor ('mvAge'). mvAge (effective n = ~1.9 million participants of European ancestry) identified 52 independent variants in 38 genomic loci. Twenty variants were novel (not reported in input genome-wide association studies). Transcriptomic imputation identified age-relevant genes, including VEGFA and PHB1. Drug-target Mendelian randomization with metformin target genes showed a beneficial impact on mvAge (P value = 8.41 × 10-5). Similarly, genetically proxied thiazolidinediones (P value = 3.50 × 10-10), proprotein convertase subtilisin/kexin 9 inhibition (P value = 1.62 × 10-6), angiopoietin-like protein 4, beta blockers and calcium channel blockers also had beneficial Mendelian randomization estimates. Extending the drug-target Mendelian randomization framework to 3,947 protein-coding genes prioritized 122 targets. Together, these findings will inform future studies aimed at improving healthy aging.


Asunto(s)
Estudio de Asociación del Genoma Completo , Envejecimiento Saludable , Fenotipo , Longevidad
10.
Biol Psychiatry ; 93(4): 331-341, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182531

RESUMEN

BACKGROUND: Stress contributes to premature aging and susceptibility to alcohol use disorder (AUD), and AUD itself is a factor in premature aging; however, the interrelationships of stress, AUD, and premature aging are poorly understood. METHODS: We constructed a composite score of stress from 13 stress-related outcomes in a discovery cohort of 317 individuals with AUD and control subjects. We then developed a novel methylation score of stress (MS stress) as a proxy of composite score of stress comprising 211 CpGs selected using a penalized regression model. The effects of MS stress on health outcomes and epigenetic aging were assessed in a sample of 615 patients with AUD and control subjects using epigenetic clocks and DNA methylation-based telomere length. Statistical analysis with an additive model using MS stress and a MS for alcohol consumption (MS alcohol) was conducted. Results were replicated in 2 independent cohorts (Generation Scotland, N = 7028 and the Grady Trauma Project, N = 795). RESULTS: Composite score of stress and MS stress were strongly associated with heavy alcohol consumption, trauma experience, epigenetic age acceleration (EAA), and shortened DNA methylation-based telomere length in AUD. Together, MS stress and MS alcohol additively showed strong stepwise increases in EAA. Replication analyses showed robust association between MS stress and EAA in the Generation Scotland and Grady Trauma Project cohorts. CONCLUSIONS: A methylation-derived score tracking stress exposure is associated with various stress-related phenotypes and EAA. Stress and alcohol have additive effects on aging, offering new insights into the pathophysiology of premature aging in AUD and, potentially, other aspects of gene dysregulation in this disorder.


Asunto(s)
Envejecimiento Prematuro , Alcoholismo , Humanos , Alcoholismo/genética , Envejecimiento Prematuro/genética , Consumo de Bebidas Alcohólicas/genética , Metilación de ADN , Epigénesis Genética
11.
ACS Chem Neurosci ; 13(23): 3210-3212, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36374568

RESUMEN

Individuals with genetic gain-of-function variation in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene are at an increased risk of cardiovascular disease, including ischemic stroke. While PCSK9 inhibitors (PCSK9i) are effective in reducing cardiovascular disease risk and ischemic stroke risk, novel genomic technologies including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 complex-mediated delivery and adenine base editing (ABE) enable promising new therapeutic and preventative approaches. In this paper we discuss ongoing work into PCSK9 base editing and highlight future directions relevant to cardiovascular disease and ischemic stroke.


Asunto(s)
Enfermedades Cardiovasculares , Accidente Cerebrovascular Isquémico , Humanos , Proproteína Convertasa 9/genética , Edición Génica
12.
J Am Coll Cardiol ; 80(7): 653-662, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35953131

RESUMEN

BACKGROUND: Lipid-lowering therapy with statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition are effective strategies in reducing cardiovascular disease risk; however, concerns remain about potential long-term adverse neurocognitive effects. OBJECTIVES: This genetics-based study aimed to evaluate the relationships of long-term PCSK9 inhibition and statin use on neurocognitive outcomes. METHODS: We extracted single-nucleotide polymorphisms in 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and PCSK9 from predominantly European ancestry-based genome-wide association studies summary-level statistics of low-density lipoprotein cholesterol and performed drug-target Mendelian randomization, proxying the potential neurocognitive impact of drug-based PCSK9 and HMGCR inhibition using a range of outcomes to capture the complex facets of cognition and dementia. RESULTS: Using data from a combined sample of ∼740,000 participants, we observed a neutral cognitive profile related to genetic PCSK9 inhibition, with no significant effects on cognitive performance, memory performance, or cortical surface area. Conversely, we observed several adverse associations for HMGCR inhibition with lowered cognitive performance (beta: -0.082; 95% CI: -0.16 to -0.0080; P = 0.03), reaction time (beta = 0.00064; 95% CI: 0.00030-0.00098; P = 0.0002), and cortical surface area (beta = -0.18; 95% CI: -0.35 to -0.014; P = 0.03). Neither PCSK9 nor HMGCR inhibition impacted biomarkers of Alzheimer's disease progression or Lewy body dementia risk. Consistency of findings across Mendelian randomization methods accommodating different assumptions about genetic pleiotropy strengthens causal inference. CONCLUSIONS: Using a wide range of cognitive function and dementia endpoints, we failed to find genetic evidence of an adverse PCSK9-related impact, suggesting a neutral cognitive profile. In contrast, we observed adverse neurocognitive effects related to HMGCR inhibition, which may well be outweighed by the cardiovascular benefits of statin use, but nonetheless may warrant pharmacovigilance.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Acilcoenzima A , Enfermedad de Alzheimer/genética , Cognición , Estudio de Asociación del Genoma Completo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Análisis de la Aleatorización Mendeliana , Proproteína Convertasa 9/genética
13.
J Am Heart Assoc ; 11(21): e026122, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36285785

RESUMEN

Background PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors are important therapeutic options for reducing cardiovascular disease risk; however, questions remain regarding potential differences in the neuropsychiatric impact of long-term PCSK9 inhibition between men and women. Methods and Results Using PCSK9 gene single-nucleotide polymorphisms from European ancestry-based genome-wide association studies of low-density lipoprotein cholesterol (N=1 320 016), circulating PCSK9 protein levels (N=10 186), tissue-specific PCSK9 gene expression, sex-specific genome-wide association studies of anxiety, depression, cognition, insomnia, and dementia (ranging from 54 321 to 194 174), we used drug-target inverse variance-weighted Mendelian randomization (MR) and complementary MR methods (MR Egger, weighted median, and weighted mode) to investigate potential neuropsychiatric consequences of genetically proxied PCSK9 inhibition in men and women. We failed to find evidence surpassing correction for multiple comparisons of relationships between genetically proxied PCSK9 inhibition and the risk for the 12 neuropsychiatric end points in either men or women. Drug-target analyses were generally well-powered to detect effect estimates at several hypothesized thresholds for both combined-sex and sex-specific end points, especially analyses using PCSK9 instruments derived from protein and expression quantitative trait loci. Further, MR estimates across complementary MR methods and additional models using genetic instruments derived from circulating PCSK9 protein levels and tissue-specific PCSK9 expression were in alignment, strengthening causal inference. Conclusions Genetically proxied PCSK9 inhibition showed a neutral neuropsychiatric side effect profile with no major sex-specific differences. Given statistical power considerations, replication with larger samples, as well as data from other ancestral populations, are necessary. These findings may have important clinical implications for lipid-lowering drug-prescribing practices and side effect monitoring of approved and future PCSK9 therapies.


Asunto(s)
Trastornos del Conocimiento , Demencia , Trastornos del Humor , Proproteína Convertasa 9 , Femenino , Humanos , Masculino , Cognición , Trastornos del Conocimiento/genética , Demencia/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos del Humor/genética , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo
15.
Transl Stroke Res ; 9(6): 631-642, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29429002

RESUMEN

Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.


Asunto(s)
Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Endotelio Vascular/patología , Regulación de la Expresión Génica/fisiología , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Hemorragia Subaracnoidea/patología , Animales , Anticuerpos/farmacología , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular Transformada , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Impedancia Eléctrica , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/inmunología , Interleucina-6/farmacología , Imagen por Resonancia Magnética , Masculino , Ratones , Ocludina/metabolismo , Receptores de Interleucina-6/genética , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/mortalidad
16.
J Cereb Blood Flow Metab ; 37(4): 1527-1539, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27381827

RESUMEN

Moyamoya disease is a rare steno-occlusive cerebrovascular disorder often resulting in hemorrhagic and ischemic strokes. Although sharing the same ischemic stimulus with atherosclerotic cerebrovascular disease, Moyamoya disease is characterized by a highly instable cerebrovascular system which is prone to rupture due to pathological neovascularization. To understand the molecular mechanisms underlying this instability, angiopoietin-2 gene expression was analyzed in middle cerebral artery lesions obtained from Moyamoya disease and atherosclerotic cerebrovascular disease patients. Angiopoietin-2 was significantly up-regulated in Moyamoya vessels, while serum concentrations of soluble angiopoietins were not changed. For further evaluations, cerebral endothelial cells incubated with serum from these patients in vitro were applied. In contrast to atherosclerotic cerebrovascular disease serum, Moyamoya disease serum induced an angiopoietin-2 overexpression and secretion, accompanied by loss of endothelial integrity. These effects were absent or inverse in endothelial cells of non-brain origin suggesting brain endothelium specificity. The destabilizing effects on brain endothelial cells to Moyamoya disease serum were partially suppressed by the inhibition of angiopoietin-2. Our findings define brain endothelial cells as the potential source of vessel-destabilizing factors inducing the high plasticity state and disintegration in Moyamoya disease in an autocrine manner. We also provide new insights into Moyamoya disease pathophysiology that may be helpful for preventive treatment strategies in future.


Asunto(s)
Angiopoyetina 2/sangre , Comunicación Autocrina/fisiología , Circulación Cerebrovascular/fisiología , Arteriosclerosis Intracraneal/metabolismo , Arteria Cerebral Media/patología , Enfermedad de Moyamoya/metabolismo , Adulto , Angiopoyetina 2/genética , Animales , Comunicación Autocrina/genética , Línea Celular , Proliferación Celular , Circulación Cerebrovascular/genética , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunohistoquímica , Arteriosclerosis Intracraneal/sangre , Arteriosclerosis Intracraneal/patología , Arteriosclerosis Intracraneal/fisiopatología , Masculino , Ratones , Persona de Mediana Edad , Arteria Cerebral Media/metabolismo , Enfermedad de Moyamoya/sangre , Enfermedad de Moyamoya/patología , Enfermedad de Moyamoya/fisiopatología
17.
Transl Stroke Res ; 8(2): 144-156, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27477569

RESUMEN

Activation of innate immunity contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Microglia accumulation and activation within the brain has recently been shown to induce neuronal cell death after eSAH. In isolated mouse brain capillaries after eSAH, we show a significantly increased gene expression for intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Hence, we hypothesized that extracerebral intravascular inflammatory processes might initiate the previously reported microglia accumulation within the brain tissue. We therefore induced eSAH in knockout mice for ICAM-1 (ICAM-1-/-) and P-selectin glycoprotein ligand-1 (PSGL-1-/-) to find a significant decrease in neutrophil-endothelial interaction within the first 7 days after the bleeding in a chronic cranial window model. This inhibition of neutrophil recruitment to the endothelium results in significantly ameliorated microglia accumulation and neuronal cell death in knockout animals in comparison to controls. Our results suggest an outside-in activation of the CNS innate immune system at the vessel/brain interface following eSAH. Microglia cells, as part of the brain's innate immune system, are triggered by an inflammatory reaction in the microvasculature after eSAH, thus contributing to neuronal cell death. This finding offers a whole range of new research targets, as well as possible therapy options for patients suffering from eSAH.


Asunto(s)
Encéfalo/fisiopatología , Encefalitis/fisiopatología , Molécula 1 de Adhesión Intercelular/metabolismo , Microglía/fisiología , Selectina-P/metabolismo , Hemorragia Subaracnoidea/fisiopatología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Muerte Celular , Movimiento Celular , Modelos Animales de Enfermedad , Encefalitis/metabolismo , Endotelio Vascular/fisiología , Femenino , Hemodinámica , Inmunidad Innata , Leucocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/metabolismo , Neutrófilos/fisiología , Hemorragia Subaracnoidea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA