Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exerc Sport Sci Rev ; 49(2): 115-125, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33739944

RESUMEN

One of the best strategies for healthy brain aging is regular aerobic exercise. Commonly studied "anti-aging" compounds may mimic some effects of exercise on the brain, but novel approaches that target energy-sensing pathways similar to exercise probably will be more effective in this context. We review evidence in support of this hypothesis by focusing on biological hallmarks of brain aging.


Asunto(s)
Envejecimiento , Encéfalo , Humanos
2.
J Physiol ; 598(11): 2081-2092, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198893

RESUMEN

KEY POINTS: Night time/active phase food restriction for 6 h impaired glucose intolerance in young male and female mice. Females displayed increased capacity for lipogenesis and triglyceride storage in response to a short daily fast. Females had lower fasting insulin levels and an increased potential for utilizing fat for energy through ß-oxidation compared to males. The need for the inclusion of both sexes, and the treatment of sex as an independent variable, is emphasized within the context of this fasting regime. ABSTRACT: There is growing interest in understanding the mechanistic significance and benefits of fasting physiology in combating obesity. Increasing the fasting phase of a normal day can promote restoration and repair mechanisms that occur during the post-absorptive period. Most studies exploring the effect of restricting food access on mitigating obesity have done so with a large bias towards the use of male mice. Here, we disentangle the roles of sex, food intake and food withdrawal in the response to a short-term daily fasting intervention, in which food was removed for 6 h in the dark/active phase of young, 8-week-old mice. We showed that the removal of food during the dark phase impaired glucose tolerance in males and females, possibly due to the circadian disruption induced by this feeding protocol. Although both sexes demonstrated similar patterns of food intake, body composition and various metabolic markers, there were clear sex differences in the magnitude and extent of these responses. While females displayed enhanced capacity for lipogenesis and triglyceride storage, they also had low fasting insulin levels and an increased potential for utilizing available energy sources such as fat for energy through ß-oxidation. Our results highlight the intrinsic biological and metabolic disparities between male and female mice, emphasizing the growing need for the inclusion of both sexes in scientific research. Furthermore, our results illustrate sex-specific metabolic pathways that regulate lipogenesis, obesity and overall metabolic health.


Asunto(s)
Ayuno , Intolerancia a la Glucosa , Animales , Composición Corporal , Femenino , Masculino , Ratones , Obesidad , Caracteres Sexuales
3.
FASEB J ; 33(7): 8033-8042, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30925066

RESUMEN

Recent research has shown significant health benefits deriving from high-dietary fiber or microbiome-accessible carbohydrate consumption. Compared with native starch (NS), dietary resistant starch (RS) is a high microbiome-accessible carbohydrate that significantly alters the gut microbiome. The aim of this study was to determine the systemic metabolic effects of high microbiome-accessible carbohydrate. Male C57BL/6 mice were divided into 2 groups and fed either NS or RS for 18 wk (n = 20/group). Metabolomic analyses revealed that plasma levels of numerous metabolites were significantly different between the RS-fed and NS-fed mice, many of which are microbiome-derived. Most strikingly, we observed a 22-fold increase in gut microbiome-derived tryptophan metabolite indole-3-propionate (IPA), which was positively correlated with several gut microbiota, including Allobaculum, Bifidobacterium, and Lachnospiraceae, with Allobaculum having the most consistently increased abundance of all the IPA-associated taxa across all RS-fed mice. In addition, major changes were observed for metabolites solely or primarily metabolized in the gut (e.g., trimethylamine-N-oxide), metabolites that have a significant entero-hepatic circulation (i.e., bile acids), lipid metabolites (e.g., cholesterol sulfate), metabolites indicating increased energy turnover (e.g., tricarboxylic acid cycle intermediates and ketone bodies), and increased antioxidants such as reduced glutathione. Our findings reveal potentially novel mediators of high microbiome-accessible carbohydrate-derived health benefits.-Koay,Y. C., Wali. J. A., Luk, A. W. S., Macia, L., Cogger, V. C., Pulpitel, T. J., Wahl, D., Solon-Biet, S. M., Holmes, A., Simpson, S. J., O'Sullivan, J. F. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites.


Asunto(s)
Microbioma Gastrointestinal , Almidón/farmacología , Alimentación Animal , Animales , Bacterias/metabolismo , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/sangre , Lípidos/sangre , Masculino , Metaboloma , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Solubilidad , Almidón/farmacocinética , Espectrometría de Masas en Tándem
4.
Neurobiol Dis ; 130: 104481, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31136814

RESUMEN

Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.


Asunto(s)
Envejecimiento , Demencia , Estilo de Vida , Animales , Humanos , Factores de Riesgo
5.
Exerc Sport Sci Rev ; 49(4): 293, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547763
6.
Age Ageing ; 45(4): 443-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130207

RESUMEN

Nutrition has profound effects on ageing and lifespan. Caloric restriction is the major nutritional intervention that historically has been shown to influence lifespan and/or healthspan in many animal models. Studies have suggested that a reduction in protein intake can also increase lifespan, albeit not as dramatically as caloric restriction. More recent research based on nutritional geometry has attempted to define the effects of nutrition on ageing over a broad landscape of dietary macronutrients and energy content. Such studies in insects and mice indicate that animals with ad libitum access to low-protein, high-carbohydrate diets have longest lifespans. Remarkably, the optimum content and ratio of dietary protein to carbohydrates for ageing in experimental animals are almost identical to those in the traditional diets of the long-lived people on the island of Okinawa.


Asunto(s)
Envejecimiento/metabolismo , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Estado Nutricional , Factores de Edad , Animales , Restricción Calórica , Proteínas en la Dieta/efectos adversos , Humanos , Japón , Esperanza de Vida , Modelos Animales
7.
Aging (Albany NY) ; 16(10): 9280-9302, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38805248

RESUMEN

Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.


Asunto(s)
Envejecimiento , Encéfalo , Estrés Oxidativo , Humanos , Envejecimiento/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Enfermedades Vasculares Periféricas/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Demencia/fisiopatología , Demencia/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Factores de Riesgo , Animales
8.
Exp Gerontol ; 192: 112458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735597

RESUMEN

Reducing neuroinflammation, a key contributor to brain aging and neurodegenerative diseases, is a promising strategy for improving cognitive function in these settings. The FDA-approved nucleoside reverse transcriptase inhibitor 3TC (Lamivudine) has been reported to improve cognitive function in old wild-type mice and multiple mouse models of neurodegenerative disease, but its effects on the brain have not been comprehensively investigated. In the current study, we used transcriptomics to broadly characterize the effects of long-term supplementation with a human-equivalent therapeutic dose of 3TC on the hippocampal transcriptome in male and female rTg4510 mice (a commonly studied model of tauopathy-associated neurodegeneration). We found that tauopathy increased hippocampal transcriptomic signatures of neuroinflammation/immune activation, but 3TC treatment reversed some of these effects. We also found that 3TC mitigated tauopathy-associated activation of key transcription factors that contribute to neuroinflammation and immune activation, and these changes were related to improved recognition memory performance. Collectively, our findings suggest that 3TC exerts protective effects against tauopathy in the hippocampus by modulating inflammation and immune activation, and they may provide helpful insight for ongoing clinical efforts to determine if 3TC and/or related therapeutics hold promise for treating neurodegeneration.


Asunto(s)
Modelos Animales de Enfermedad , Hipocampo , Lamivudine , Inhibidores de la Transcriptasa Inversa , Tauopatías , Transcriptoma , Animales , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Ratones , Masculino , Inhibidores de la Transcriptasa Inversa/farmacología , Femenino , Lamivudine/farmacología , Lamivudine/uso terapéutico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/genética , Ratones Transgénicos , Inflamación/tratamiento farmacológico
9.
Mech Ageing Dev ; 217: 111889, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007051

RESUMEN

Brain aging is associated with reduced cognitive function that increases the risk for dementia. Apigenin is a bioactive plant compound that inhibits cellular aging processes and could protect against age-related cognitive dysfunction, but its mechanisms of action in the brain have not been comprehensively studied. We characterized brain transcriptome changes in young and old mice treated with apigenin in drinking water. We observed improved learning/memory in old treated mice, and our transcriptome analyses indicated that differentially expressed genes with aging and apigenin were primarily related to immune responses, inflammation, and cytokine regulation. Moreover, we found that genes/transcripts that were increased in old vs. young mice but downregulated with apigenin treatment in old animals were associated with immune activation/inflammation, whereas transcripts that were reduced with aging but increased with apigenin were related neuronal function and signaling. We also found that these transcriptome differences with aging and apigenin treatment were driven in part by glial cells. To follow up on these in vivo transcriptome findings, we studied aged astrocytes in vitro, and we found that apigenin reduced markers of inflammation and cellular senescence in these cells. Collectively, our data suggest that apigenin may protect against age-related cognitive dysfunction by suppressing neuro-inflammatory processes.


Asunto(s)
Apigenina , Encéfalo , Transcriptoma , Animales , Ratones , Envejecimiento/fisiología , Apigenina/farmacología , Encéfalo/efectos de los fármacos , Inflamación
10.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38370618

RESUMEN

Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.

11.
Geroscience ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641753

RESUMEN

Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.

12.
Aging Cell ; 22(5): e13798, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949552

RESUMEN

Aging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood. Age-related increases in transposable element (TE) transcripts might contribute to reduced cognitive function with brain aging, as the reverse transcriptase inhibitor 3TC reduces inflammation in peripheral tissues and TE transcripts have been linked with tau pathology in Alzheimer's disease. However, the effects of 3TC on cognitive function with aging have not been investigated. Here, in support of a role for TE transcripts in brain aging/cognitive decline, we show that 3TC: (a) improves cognitive function and reduces neuroinflammation in old wild-type mice; (b) preserves neuronal health with aging in mice and Caenorhabditis elegans; and (c) enhances cognitive function in a mouse model of tauopathy. We also provide insight on potential underlying mechanisms, as well as evidence of translational relevance for these observations by showing that TE transcripts accumulate with brain aging in humans, and that these age-related increases intersect with those observed in Alzheimer's disease. Collectively, our results suggest that TE transcript accumulation during aging may contribute to cognitive decline and neurodegeneration, and that targeting these events with reverse transcriptase inhibitors like 3TC could be a viable therapeutic strategy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Inhibidores de la Transcriptasa Inversa , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Encéfalo/patología , Envejecimiento
14.
Adv Drug Deliv Rev ; 190: 114537, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115494

RESUMEN

Many people living with dementia and cognitive impairment have dysfunctional mitochondrial and insulin-glucose metabolism resembling type 2 diabetes mellitus and old age. Evidence from human trials shows that nutritional interventions and anti-diabetic medicines that target nutrient-sensing pathways overcome these deficits in glucose and energy metabolism and can improve cognition and/or reduce symptoms of dementia. The liver is the main organ that mediates the systemic effects of diets and many diabetic medicines; therefore, it is an intermediate target for such dementia interventions. A challenge is the efficacy of these treatments in older age. Solutions include the targeted hepatic delivery of diabetic medicines using nanotechnologies and titration of macronutrients to optimize hepatic energy metabolism.


Asunto(s)
Disfunción Cognitiva , Demencia , Diabetes Mellitus Tipo 2 , Disfunción Cognitiva/tratamiento farmacológico , Demencia/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta , Glucosa , Humanos , Insulina , Hígado , Nutrientes
15.
Nutrients ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364797

RESUMEN

Calorie restriction (CR), defined as a reduction of the total calorie intake of 30% to 60% without malnutrition, is the only nutritional strategy that has been shown to extend lifespan, prevent or delay the onset of age-associated diseases, and delay the functional decline in a wide range of species. However, little is known about the effects of CR when started early in life. We sought to analyze the effects of CR in the skeletal muscle of young Wistar rats. For this, 3-month-old male and female rats were subjected to 40% CR or fed ad libitum for 3 months. Gastrocnemius muscles were used to extract RNA and total protein. Western blot and RT-qPCR were performed to evaluate the expression of key markers/pathways modulated by CR and affected by aging. CR decreased body and skeletal muscle weight in both sexes. No differences were found in most senescence, antioxidant, and nutrient sensing pathways analyzed. However, we found a sexual dimorphism in markers of oxidative stress, inflammation, apoptosis, and mitochondrial function in response to CR. Our data show that young female rats treated with CR exhibit similar expression patterns of key genes/pathways associated with healthy aging when compared to old animals treated with CR, while in male rats these effects are reduced. Additional studies are needed to understand how early or later life CR exerts positive effects on healthspan and lifespan.


Asunto(s)
Restricción Calórica , Caracteres Sexuales , Ratas , Masculino , Femenino , Animales , Ratas Wistar , Músculo Esquelético/metabolismo , Envejecimiento/fisiología
16.
J Gerontol A Biol Sci Med Sci ; 77(9): 1766-1774, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35323931

RESUMEN

Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aß], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans. Here, we describe 2 nontransgenic guinea pig (GP) models, a standard PigmEnTed (PET) strain, and lesser-studied Dunkin-Hartley (DH) strain, that may naturally mimic key features of brain aging and AD in humans. We show that brain aging in PET GP is transcriptomically similar to human brain aging, whereas older DH brains are transcriptomically more similar to human AD. Both strains/models also exhibit increased neurofilament light chain (NFL, a marker of neuronal damage) with aging, and DH animals display greater S100 calcium-binding protein B (S100ß), ionized calcium-binding adapter molecule 1 (Iba1), and Aß and phosphorylated tau-which are all important markers of neuroinflammation-associated AD. Collectively, our results suggest that both the PET and DH GP may be useful, nontransgenic models to study brain aging and AD, respectively.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Cobayas , Humanos , Proteínas tau/metabolismo
17.
Front Nutr ; 8: 712129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447778

RESUMEN

Aging is the greatest risk factor most diseases, including cardiovascular disorders, cancers, diabetes, and neurodegeneration, but select nutritional interventions may profoundly reduce the risk for these conditions. These interventions include calorie restriction, intermittent fasting, protein restriction, and reducing intake of certain amino acids. Certain ad libitum diets, including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, and Okinawan diets also promote healthy aging. Evidence indicates that these dietary strategies influence aging and healthspan by acting on the biological "hallmarks of aging" and especially upstream nutrient sensing pathways. Recent advances in "omics" technologies, including RNA-sequencing (transcriptomics), have increased our understanding of how such nutritional interventions may influence gene expression related to these biological mediators of aging, primarily in pre-clinical studies. However, whether these effects are also reflected in the human transcriptome, which may provide insight on other downstream/related cellular processes with aging, is an emerging topic. Broadly, the investigation of how these nutritional interventions influence the transcriptome may provide novel insight into pathways associated with aging, and potential targets to treat age-associated disease and increase healthspan. Therefore, the purpose of this mini review is to summarize what is known about the transcriptomic effects of key dietary/nutritional interventions in both pre-clinical models and humans, address gaps in the literature, and provide insight into future research directions.

18.
J Gerontol A Biol Sci Med Sci ; 76(5): 805-810, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257951

RESUMEN

Transcripts from noncoding repetitive elements (REs) in the genome may be involved in aging. However, they are often ignored in transcriptome studies on healthspan and lifespan, and their role in healthy aging interventions has not been characterized. Here, we analyze REs in RNA-seq datasets from mice subjected to robust healthspan- and lifespan-increasing interventions including calorie restriction, rapamycin, acarbose, 17-α-estradiol, and Protandim. We also examine RE transcripts in long-lived transgenic mice, and in mice subjected to a high-fat diet, and we use RNA-seq to investigate the influence of aerobic exercise on RE transcripts with aging in humans. We find that (a) healthy aging interventions/behaviors globally reduce RE transcripts, whereas aging and high-fat diet (an age-accelerating treatment) increase RE expression; and (b) reduced RE expression with healthy aging interventions is associated with biological/physiological processes mechanistically linked with aging. Our results suggest that RE transcript dysregulation and suppression are likely novel mechanisms underlying aging and healthy aging interventions, respectively.


Asunto(s)
Elementos Transponibles de ADN , Envejecimiento Saludable , ARN no Traducido , Secuencias Repetitivas de Ácidos Nucleicos , Acarbosa/farmacología , Adolescente , Anciano , Animales , Restricción Calórica , Dieta Alta en Grasa , Medicamentos Herbarios Chinos/farmacología , Estradiol/farmacología , Humanos , Ratones , Persona de Mediana Edad , Sirolimus/farmacología , Adulto Joven
19.
Exp Gerontol ; 152: 111451, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147619

RESUMEN

Cancer is one of the most common age-related diseases, and over one-third of cancer patients will receive chemotherapy. One frequently reported side effect of chemotherapeutic agents like doxorubicin (Doxo) is impaired cognitive function, commonly known as "chemotherapy-induced cognitive impairment (CICI)", which may mimic accelerated brain aging. The biological mechanisms underlying the adverse effects of Doxo on the brain are unclear but could involve mitochondrial dysfunction. Here, we characterized brain (hippocampal) transcriptome and cognitive/behavioral changes in young mice treated with Doxo +/- the mitochondrial therapeutic MitoQ. We found that Doxo altered transcriptome/biological processes related to synaptic transmission and neurotransmitter function, neuronal health and behavior, and that these gene expression changes were: 1) similar to key differences observed in transcriptome data on brain aging; and 2) associated with related, aging-like behavioral differences, such as decreased exploration time and impaired novel object recognition test (NOR, an index of learning/memory) performance. Interestingly, MitoQ partially prevented Doxo-induced transcriptome changes in the brain, but it had no effect on behavior or cognitive function. Collectively, our findings are consistent with the idea that chemotherapeutic agents could induce neuronal/gene expression and behavioral changes similar to those that occur during brain aging. In this context, mitochondrial therapeutics may have potential as treatments for CICI at the biological level, but their effects on behavior/cognitive function require further investigation.


Asunto(s)
Disfunción Cognitiva , Transcriptoma , Envejecimiento/genética , Animales , Encéfalo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Doxorrubicina , Humanos , Ratones
20.
Nat Metab ; 3(6): 810-828, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34099926

RESUMEN

Reduced protein intake, through dilution with carbohydrate, extends lifespan and improves mid-life metabolic health in animal models. However, with transition to industrialised food systems, reduced dietary protein is associated with poor health outcomes in humans. Here we systematically interrogate the impact of carbohydrate quality in diets with varying carbohydrate and protein content. Studying 700 male mice on 33 isocaloric diets, we find that the type of carbohydrate and its digestibility profoundly shape the behavioural and physiological responses to protein dilution, modulate nutrient processing in the liver and alter the gut microbiota. Low (10%)-protein, high (70%)-carbohydrate diets promote the healthiest metabolic outcomes when carbohydrate comprises resistant starch (RS), yet the worst outcomes were with a 50:50 mixture of monosaccharides fructose and glucose. Our findings could explain the disparity between healthy, high-carbohydrate diets and the obesogenic impact of protein dilution by glucose-fructose mixtures associated with highly processed diets.


Asunto(s)
Dieta , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Metabolismo Energético , Homeostasis , Animales , Glucosa/metabolismo , Estado de Salud , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA