Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 24(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29261093

RESUMEN

Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.


Asunto(s)
Desinfectantes/farmacología , Ebolavirus/efectos de los fármacos , Blanqueadores/farmacología , Células Cultivadas/virología , Pruebas con Sangre Seca , Humanos , Laboratorios , Ácido Peracético/farmacología
2.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974564

RESUMEN

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/fisiología , Evolución Biológica , Interacciones Huésped-Patógeno , Enfermedades de los Monos/virología , Animales , Interacciones Huésped-Patógeno/genética , Macaca fascicularis , Enfermedades de los Monos/genética , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , ARN Viral , Selección Genética , Internalización del Virus , Replicación Viral
3.
Mol Cell Proteomics ; 14(3): 646-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573744

RESUMEN

The Syrian golden hamster has been increasingly used to study viral hemorrhagic fever (VHF) pathogenesis and countermeasure efficacy. As VHFs are a global health concern, well-characterized animal models are essential for both the development of therapeutics and vaccines as well as for increasing our understanding of the molecular events that underlie viral pathogenesis. However, the paucity of reagents or platforms that are available for studying hamsters at a molecular level limits the ability to extract biological information from this important animal model. As such, there is a need to develop platforms/technologies for characterizing host responses of hamsters at a molecular level. To this end, we developed hamster-specific kinome peptide arrays to characterize the molecular host response of the Syrian golden hamster. After validating the functionality of the arrays using immune agonists of defined signaling mechanisms (lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α), we characterized the host response in a hamster model of VHF based on Pichinde virus (PICV(1)) infection by performing temporal kinome analysis of lung tissue. Our analysis revealed key roles for vascular endothelial growth factor (VEGF), interleukin (IL) responses, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and Toll-like receptor (TLR) signaling in the response to PICV infection. These findings were validated through phosphorylation-specific Western blot analysis. Overall, we have demonstrated that hamster-specific kinome arrays are a robust tool for characterizing the species-specific molecular host response in a VHF model. Further, our results provide key insights into the hamster host response to PICV infection and will inform future studies with high-consequence VHF pathogens.


Asunto(s)
Fiebre Hemorrágica Americana/virología , Pulmón/enzimología , Virus Pichinde/fisiología , Proteínas Quinasas/aislamiento & purificación , Proteoma/análisis , Animales , Modelos Animales de Enfermedad , Femenino , Fiebre Hemorrágica Americana/enzimología , Interleucinas/aislamiento & purificación , Pulmón/virología , Mesocricetus , FN-kappa B/aislamiento & purificación , Fosforilación , Transducción de Señal , Especificidad de la Especie , Receptores Toll-Like/aislamiento & purificación , Factor A de Crecimiento Endotelial Vascular/aislamiento & purificación
4.
J Virol ; 89(1): 844-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355889

RESUMEN

UNLABELLED: Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-ß-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE: Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Arterivirus/fisiología , Endocitosis , Interacciones Huésped-Patógeno , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Línea Celular , Chlorocebus aethiops
5.
J Virol ; 88(17): 9877-92, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942569

RESUMEN

UNLABELLED: Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-ß)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-ß signaling in the kinome data sets correlated with the upregulation of TGF-ß secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-ß signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-ß signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-ß signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-ß that may contribute to this process. From these observations, we propose a model for a broader role of TGF-ß-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE: Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-ß-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-ß-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis.


Asunto(s)
Diferenciación Celular , Ebolavirus/fisiología , Hepatocitos/fisiología , Interacciones Huésped-Patógeno , Mesodermo/crecimiento & desarrollo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Fiebre Hemorrágica Ebola/patología , Humanos , Ratones Endogámicos BALB C
6.
PLoS Pathog ; 9(7): e1003470, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874198

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections.


Asunto(s)
Capilares/virología , Permeabilidad Capilar , Endotelio Vascular/virología , Activación Enzimática , Factor XII/metabolismo , Infecciones por Hantavirus/virología , Sistema Calicreína-Quinina , Bradiquinina/antagonistas & inhibidores , Bradiquinina/metabolismo , Capilares/efectos de los fármacos , Capilares/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Activación Enzimática/efectos de los fármacos , Factor XII/antagonistas & inhibidores , Orthohantavirus/fisiología , Infecciones por Hantavirus/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Sistema Calicreína-Quinina/efectos de los fármacos , Quininógeno de Alto Peso Molecular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/virología , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/virología , Precalicreína/antagonistas & inhibidores , Precalicreína/metabolismo , Inhibidores de Proteasas/farmacología , Proteolisis/efectos de los fármacos , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/virología , Propiedades de Superficie , Replicación Viral
7.
Arch Virol ; 159(5): 1229-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24190508

RESUMEN

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV H.sap/COD/95/Kik-abc1") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.


Asunto(s)
Filoviridae/clasificación , Filoviridae/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Genoma Viral
8.
J Virol ; 85(17): 8502-13, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21697477

RESUMEN

With the exception of Reston and Lloviu viruses, filoviruses (marburgviruses, ebolaviruses, and "cuevaviruses") cause severe viral hemorrhagic fevers in humans. Filoviruses use a class I fusion protein, GP(1,2), to bind to an unknown, but shared, cell surface receptor to initiate virus-cell fusion. In addition to GP(1,2), ebolaviruses and cuevaviruses, but not marburgviruses, express two secreted glycoproteins, soluble GP (sGP) and small soluble GP (ssGP). All three glycoproteins have identical N termini that include the receptor-binding region (RBR) but differ in their C termini. We evaluated the effect of the secreted ebolavirus glycoproteins on marburgvirus and ebolavirus cell entry, using Fc-tagged recombinant proteins. Neither sGP-Fc nor ssGP-Fc bound to filovirus-permissive cells or inhibited GP(1,2)-mediated cell entry of pseudotyped retroviruses. Surprisingly, several Fc-tagged Δ-peptides, which are small C-terminal cleavage products of sGP secreted by ebolavirus-infected cells, inhibited entry of retroviruses pseudotyped with Marburg virus GP(1,2), as well as Marburg virus and Ebola virus infection in a dose-dependent manner and at low molarity despite absence of sequence similarity to filovirus RBRs. Fc-tagged Δ-peptides from three ebolaviruses (Ebola virus, Sudan virus, and Taï Forest virus) inhibited GP(1,2)-mediated entry and infection of viruses comparably to or better than the Fc-tagged RBRs, whereas the Δ-peptide-Fc of an ebolavirus nonpathogenic for humans (Reston virus) and that of an ebolavirus with lower lethality for humans (Bundibugyo virus) had little effect. These data indicate that Δ-peptides are functional components of ebolavirus proteomes. They join cathepsins and integrins as novel modulators of filovirus cell entry, might play important roles in pathogenesis, and could be exploited for the synthesis of powerful new antivirals.


Asunto(s)
Antivirales/metabolismo , Ebolavirus/efectos de los fármacos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Marburgvirus/efectos de los fármacos , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Productos Biológicos/metabolismo , Línea Celular , Ebolavirus/fisiología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Marburgvirus/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética
9.
PLoS Pathog ; 6(5): e1000904, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20502688

RESUMEN

A major challenge in developing vaccines for emerging pathogens is their continued evolution and ability to escape human immunity. Therefore, an important goal of vaccine research is to advance vaccine candidates with sufficient breadth to respond to new outbreaks of previously undetected viruses. Ebolavirus (EBOV) vaccines have demonstrated protection against EBOV infection in nonhuman primates (NHP) and show promise in human clinical trials but immune protection occurs only with vaccines whose antigens are matched to the infectious challenge species. A 2007 hemorrhagic fever outbreak in Uganda demonstrated the existence of a new EBOV species, Bundibugyo (BEBOV), that differed from viruses covered by current vaccine candidates by up to 43% in genome sequence. To address the question of whether cross-protective immunity can be generated against this novel species, cynomolgus macaques were immunized with DNA/rAd5 vaccines expressing ZEBOV and SEBOV glycoprotein (GP) prior to lethal challenge with BEBOV. Vaccinated subjects developed robust, antigen-specific humoral and cellular immune responses against the GP from ZEBOV as well as cellular immunity against BEBOV GP, and immunized macaques were uniformly protected against lethal challenge with BEBOV. This report provides the first demonstration of vaccine-induced protective immunity against challenge with a heterologous EBOV species, and shows that Ebola vaccines capable of eliciting potent cellular immunity may provide the best strategy for eliciting cross-protection against newly emerging heterologous EBOV species.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Epítopos/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/prevención & control , Reacciones Cruzadas/inmunología , ADN Viral/genética , Ebolavirus/clasificación , Ebolavirus/genética , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Inmunidad Humoral/inmunología , Macaca fascicularis , Especificidad de la Especie , Uganda , Vacunación/métodos , Proteínas Virales/genética , Proteínas Virales/inmunología
10.
J Gen Virol ; 92(Pt 12): 2900-2905, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21900424

RESUMEN

The filoviral matrix protein VP40 orchestrates virus morphogenesis and budding. To do this it interacts with both the glycoprotein (GP1,2) and the ribonucleoprotein (RNP) complex components; however, these interactions are still not well understood. Here we show that for efficient VP40-driven formation of transcription and replication-competent virus-like particles (trVLPs), which contain both an RNP complex and GP1,2, the RNP components and VP40, but not GP1,2 and VP40, must be from the same genus. trVLP preparations contained both spherical and filamentous particles, but only the latter were able to infect target cells and to lead to genome replication and transcription. Interestingly, the genus specificity of the VP40-RNP interactions was specific to the formation of filamentous trVLPs, but not to spherical particles. These results not only further our understanding of VP40 interactions, but also suggest that special care is required when using trVLP or VLP systems to model virus morphogenesis.


Asunto(s)
Ebolavirus/genética , Marburgvirus/genética , Ribonucleoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Replicación Viral , Ebolavirus/metabolismo , Ebolavirus/fisiología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Marburgvirus/fisiología , Ribonucleoproteínas/genética , Especificidad de la Especie , Proteínas de la Matriz Viral/genética , Virión/genética , Virión/metabolismo , Virión/fisiología
11.
Rapid Commun Mass Spectrom ; 24(5): 571-85, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20131323

RESUMEN

The larger fragment of the transmembrane glycoprotein (GP1) and the soluble glycoprotein (sGP) of Ebola virus were expressed in human embryonic kidney cells and the secreted products were purified from the supernatant for carbohydrate analysis. The N-glycans were released with PNGase F from within sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE) gels. Identification of the glycans was made with normal-phase high-performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionisation mass spectrometry, negative ion electrospray ionisation fragmentation mass spectrometry and exoglycosidase digestion. Most glycans were complex bi-, tri- and tetra-antennary compounds with reduced amounts of galactose. No bisected compounds were detected. Triantennary glycans were branched on the 6-antenna; fucose was attached to the core GlcNAc residue. Sialylated glycans were present on sGP but were largely absent from GP1, the larger fragment of the transmembrane glycoprotein. Consistent with this was the generally higher level of processing of carbohydrates found on sGP as evidenced by a higher percentage of galactose and lower levels of high-mannose glycans than were found on GP1. These results confirm and expand previous findings on partial characterisation of the Ebola virus transmembrane glycoprotein. They represent the first detailed data on carbohydrate structures of the Ebola virus sGP.


Asunto(s)
Ebolavirus/química , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Proteínas del Envoltorio Viral/química , Línea Celular , Electroforesis en Gel de Poliacrilamida , Fucosa/química , Galactosa/química , Hemaglutininas/química , Humanos , Manosa/química , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo
12.
Arch Virol ; 155(11): 1909-19, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20953644

RESUMEN

A proposal has been posted on the ICTV website (2011.001aG.N.v1.binomial_sp_names) to replace virus species names by non-Latinized binomial names consisting of the current italicized species name with the terminal word "virus" replaced by the italicized and non-capitalized genus name to which the species belongs. If implemented, the current italicized species name Measles virus, for instance, would become Measles morbillivirus while the current virus name measles virus and its abbreviation MeV would remain unchanged. The rationale for the proposed change is presented.


Asunto(s)
Virus de Plantas/clasificación , Terminología como Asunto
13.
J Virol ; 82(3): 1332-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18032485

RESUMEN

Hantavirus pulmonary syndrome (HPS) is a highly pathogenic disease (40% case fatality rate) carried by rodents chronically infected with certain viruses within the genus Hantavirus of the family Bunyaviridae. The primary mode of transmission to humans is thought to be inhalation of excreta from infected rodents; however, ingestion of contaminated material and rodent bites are also possible modes of transmission. Person-to-person transmission of HPS caused by one species of hantavirus, Andes virus (ANDV), has been reported. Previously, we reported that ANDV injected intramuscularly causes a disease in Syrian hamsters that closely resembles HPS in humans. Here we tested whether ANDV was lethal in hamsters when it was administered by routes that more accurately model the most common routes of human infection, i.e., the subcutaneous, intranasal, and intragastric routes. We discovered that ANDV was lethal by all three routes. Remarkably, even at very low doses, ANDV was highly pathogenic when it was introduced by the mucosal routes (50% lethal dose [LD(50)], approximately 100 PFU). We performed passive transfer experiments to test the capacity of neutralizing antibodies to protect against lethal intranasal challenge. The neutralizing antibodies used in these experiments were produced in rabbits vaccinated by electroporation with a previously described ANDV M gene-based DNA vaccine, pWRG/AND-M. Hamsters that were administered immune serum on days -1 and +5 relative to challenge were protected against intranasal challenge (21 LD(50)). These findings demonstrate the utility of using the ANDV hamster model to study transmission across mucosal barriers and provide evidence that neutralizing antibodies produced by DNA vaccine technology can be used to protect against challenge by the respiratory route.


Asunto(s)
Infecciones por Hantavirus/prevención & control , Inmunización Pasiva , Orthohantavirus/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Antivirales/inmunología , Cricetinae , Femenino , Dosificación Letal Mediana , Masculino , Mesocricetus , Pruebas de Neutralización , Conejos
16.
Methods Mol Biol ; 1628: 163-175, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28573618

RESUMEN

The 50% tissue culture infectious dose (TCID50) endpoint dilution assay is one of the gold standard methods for measuring filovirus infectivity. We have increased virology microtitration assay throughput at biosafety level (BSL)-4 by implementing automated liquid handling and semi-automated assay endpoint readout. Utilization of automated liquid handling for cell plating and virus dilution along with optimization of the assay endpoint readout, using a luminescent-based cell viability assay and an automated plate reader, has improved workflow efficiency, reduced operator burden and assay time, decreased assay variability, and increased data return.


Asunto(s)
Filoviridae/patogenicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Supervivencia Celular/genética , Filoviridae/genética , Humanos
17.
Viruses ; 9(5)2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492506

RESUMEN

The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.


Asunto(s)
Filoviridae/clasificación , Filoviridae/genética , Filogenia , Algoritmos , Secuencia de Bases , Bases de Datos de Ácidos Nucleicos , Ebolavirus/clasificación , Ebolavirus/genética , Variación Genética , Genoma Viral , Marburgvirus/clasificación , Marburgvirus/genética , Mononegavirales/clasificación , Mononegavirales/genética , Análisis de Secuencia de ADN , Diseño de Software , Especificidad de la Especie , Secuenciación Completa del Genoma
18.
PLoS One ; 11(2): e0148476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849135

RESUMEN

In support of the response to the 2013-2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks.


Asunto(s)
Ebolavirus/fisiología , Equipo de Protección Personal/virología , Animales , Sangre/virología , Chlorocebus aethiops , Ebolavirus/patogenicidad , Heces/virología , Humanos , Humedad , Especificidad de la Especie , Células Vero/virología , Vómitos/virología
19.
mBio ; 7(1): e02009-15, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26908578

RESUMEN

UNLABELLED: Simian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses. IMPORTANCE: Outbreaks of simian hemorrhagic fever (SHF) have devastated captive Asian macaque colonies in the past. SHF is caused by at least three viruses of the family Arteriviridae: simian hemorrhagic fever virus (SHFV), simian hemorrhagic encephalitis virus (SHEV), and Pebjah virus (PBJV). Nine additional distant relatives of these three viruses were recently discovered in apparently healthy African nonhuman primates. We hypothesized that all simian arteriviruses are potential causes of SHF. To test this hypothesis, we inoculated cynomolgus macaques with a highly divergent simian arterivirus (Kibale red colobus virus 1 [KRCV-1]) from a wild Ugandan red colobus. Despite being only distantly related to red colobuses, all of the macaques developed disease. In contrast to SHFV-infected animals, KRCV-1-infected animals survived after a mild disease presentation. Our study advances the understanding of an important primate disease. Furthermore, our data indicate a need to include the full diversity of simian arteriviruses in nonhuman primate SHF screening assays.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/aislamiento & purificación , Arterivirus/patogenicidad , Colobus/virología , Fiebres Hemorrágicas Virales/veterinaria , Macaca fascicularis/virología , Enfermedades de los Monos/virología , Animales , Arterivirus/genética , Arterivirus/crecimiento & desarrollo , Infecciones por Arterivirus/inmunología , Infecciones por Arterivirus/fisiopatología , Infecciones por Arterivirus/virología , Línea Celular , Fiebres Hemorrágicas Virales/inmunología , Fiebres Hemorrágicas Virales/fisiopatología , Fiebres Hemorrágicas Virales/virología , Hígado/química , Hígado/enzimología , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/fisiopatología , Uganda , Carga Viral
20.
Viruses ; 6(1): 137-50, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24402304

RESUMEN

The overall threat of a viral pathogen to human populations is largely determined by the modus operandi and velocity of the pathogen that is transmitted among humans. Microorganisms that can spread by aerosol are considered a more challenging enemy than those that require direct body-to-body contact for transmission, due to the potential for infection of numerous people rather than a single individual. Additionally, disease containment is much more difficult to achieve for aerosolized viral pathogens than for pathogens that spread solely via direct person-to-person contact. Thus, aerobiology has become an increasingly necessary component for studying viral pathogens that are naturally or intentionally transmitted by aerosol. The goal of studying aerosol viral pathogens is to improve public health preparedness and medical countermeasure development. Here, we provide a brief overview of the animal biosafety level 4 Aerobiology Core at the NIH/NIAID Integrated Research Facility at Fort Detrick, Maryland, USA.


Asunto(s)
Aerosoles , Investigación Biomédica/métodos , Contención de Riesgos Biológicos/métodos , Exposición por Inhalación , Virosis/transmisión , Animales , Modelos Animales de Enfermedad , Maryland , National Institute of Allergy and Infectious Diseases (U.S.) , National Institutes of Health (U.S.) , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA