Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(3): 404-408, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306999

RESUMEN

To celebrate the 50th anniversary of Cell Press and the Cell focus issue on structural biology, we discussed with scientists working across diverse fields how AlphaFold has changed their research and brought structural biology to the masses.


Asunto(s)
Aniversarios y Eventos Especiales , Biología Molecular
2.
Cell ; 165(1): 248-248.e1, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015313

RESUMEN

Ubiquitination is a post-translational modification of proteins involved in a variety of cellular processes. Ubiquitination requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases). This SnapShot highlights the main types of E3 ubiquitin ligases, which can be classified in three families depending on the presence of characteristic domains and on the mechanism of ubiquitin transfer to the substrate protein.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Ubiquitinación
3.
EMBO J ; 42(3): e111898, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385258

RESUMEN

Di-monoubiquitination of the FANCI-FANCD2 (ID2) complex is a central and crucial step for the repair of DNA interstrand crosslinks via the Fanconi anaemia pathway. While FANCD2 ubiquitination precedes FANCI ubiquitination, FANCD2 is also deubiquitinated at a faster rate than FANCI, which can result in a FANCI-ubiquitinated ID2 complex (IUb D2). Here, we present a 4.1 Å cryo-EM structure of IUb D2 complex bound to double-stranded DNA. We show that this complex, like ID2Ub and IUb D2Ub , is also in the closed ID2 conformation and clamps on DNA. The target lysine of FANCD2 (K561) becomes fully exposed in the IUb D2-DNA structure and is thus primed for ubiquitination. Similarly, FANCI's target lysine (K523) is also primed for ubiquitination in the ID2Ub -DNA complex. The IUb D2-DNA complex exhibits deubiquitination resistance, conferred by the presence of DNA and FANCD2. ID2Ub -DNA, on the other hand, can be efficiently deubiquitinated by USP1-UAF1, unless further ubiquitination on FANCI occurs. Therefore, FANCI ubiquitination effectively maintains FANCD2 ubiquitination in two ways: it prevents excessive FANCD2 deubiquitination within an IUb D2Ub -DNA complex, and it enables re-ubiquitination of FANCD2 within a transient, closed-on-DNA, IUb D2 complex.


Asunto(s)
Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Lisina/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Ubiquitinación , ADN/metabolismo , Daño del ADN , Reparación del ADN
4.
Proc Natl Acad Sci U S A ; 121(32): e2403114121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078678

RESUMEN

Parkin is an E3 ubiquitin ligase implicated in early-onset forms of Parkinson's disease. It catalyzes a transthiolation reaction by accepting ubiquitin (Ub) from an E2 conjugating enzyme, forming a short-lived thioester intermediate, and transfers Ub to mitochondrial membrane substrates to signal mitophagy. A major impediment to the development of Parkinsonism therapeutics is the lack of structural and mechanistic detail for the essential, short-lived transthiolation intermediate. It is not known how Ub is recognized by the catalytic Rcat domain in parkin that enables Ub transfer from an E2~Ub conjugate to the catalytic site and the structure of the transthiolation complex is undetermined. Here, we capture the catalytic intermediate for the Rcat domain of parkin in complex with ubiquitin (Rcat-Ub) and determine its structure using NMR-based chemical shift perturbation experiments. We show that a previously unidentified α-helical region near the Rcat domain is unmasked as a recognition motif for Ub and guides the C-terminus of Ub toward the parkin catalytic site. Further, we apply a combination of guided AlphaFold modeling, chemical cross-linking, and single turnover assays to establish and validate a model of full-length parkin in complex with UbcH7, its donor Ub, and phosphoubiquitin, trapped in the process of transthiolation. Identification of this catalytic intermediate and orientation of Ub with respect to the Rcat domain provides important structural insights into Ub transfer by this E3 ligase and explains how the previously enigmatic Parkinson's pathogenic mutation T415N alters parkin activity.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Dominio Catalítico , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Modelos Moleculares
5.
Biochem J ; 479(6): 751-766, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35262643

RESUMEN

The RBR E3 ligase parkin is recruited to the outer mitochondrial membrane (OMM) during oxidative stress where it becomes activated and ubiquitinates numerous proteins. Parkin activation involves binding of a phosphorylated ubiquitin (pUb), followed by phosphorylation of the Ubl domain in parkin, both mediated by the OMM kinase, PINK1. How an OMM protein is selected for ubiquitination is unclear. Parkin targeted OMM proteins have little structural or sequence similarity, with the commonality between substrates being proximity to the OMM. Here, we used chimeric proteins, tagged with ubiquitin (Ub), to evaluate parkin ubiquitination of mitochondrial acceptor proteins pre-ligated to Ub. We find that pUb tethered to the mitochondrial target proteins, Miro1 or CISD1, is necessary for parkin recruitment and essential for target protein ubiquitination. Surprisingly, phosphorylation of parkin is not necessary for the ubiquitination of either Miro1 or CISD1. Thus, parkin lacking its Ubl domain efficiently ubiquitinates a substrate tethered to pUb. Instead, phosphorylated parkin appears to stimulate free Ub chain formation. We also demonstrate that parkin ubiquitination of pUb-tethered substrates occurs on the substrate, rather than the pUb modification. We propose divergent parkin mechanisms whereby parkin-mediated ubiquitination of acceptor proteins is driven by binding to pre-existing pUb on the OMM protein and subsequent parkin phosphorylation triggers free Ub chain formation. This finding accounts for the broad spectrum of OMM proteins ubiquitinated by parkin and has implications on target design for therapeutics.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Proteínas Mitocondriales/metabolismo , Fosforilación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
EMBO J ; 37(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30446597

RESUMEN

The E3 ligase parkin ubiquitinates outer mitochondrial membrane proteins during oxidative stress and is linked to early-onset Parkinson's disease. Parkin is autoinhibited but is activated by the kinase PINK1 that phosphorylates ubiquitin leading to parkin recruitment, and stimulates phosphorylation of parkin's N-terminal ubiquitin-like (pUbl) domain. How these events alter the structure of parkin to allow recruitment of an E2~Ub conjugate and enhanced ubiquitination is an unresolved question. We present a model of an E2~Ub conjugate bound to the phospho-ubiquitin-loaded C-terminus of parkin, derived from NMR chemical shift perturbation experiments. We show the UbcH7~Ub conjugate binds in the open state whereby conjugated ubiquitin binds to the RING1/IBR interface. Further, NMR and mass spectrometry experiments indicate the RING0/RING2 interface is re-modelled, remote from the E2 binding site, and this alters the reactivity of the RING2(Rcat) catalytic cysteine, needed for ubiquitin transfer. Our experiments provide evidence that parkin phosphorylation and E2~Ub recruitment act synergistically to enhance a weak interaction of the pUbl domain with the RING0 domain and rearrange the location of the RING2(Rcat) domain to drive parkin activity.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Animales , Drosophila melanogaster , Humanos , Resonancia Magnética Nuclear Biomolecular , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Dominios Proteicos , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Nat Chem Biol ; 16(3): 291-301, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31873223

RESUMEN

DNA-damage repair is implemented by proteins that are coordinated by specialized molecular signals. One such signal in the Fanconi anemia (FA) pathway for the repair of DNA interstrand crosslinks is the site-specific monoubiquitination of FANCD2 and FANCI. The signal is mediated by a multiprotein FA core complex (FA-CC) however, the mechanics for precise ubiquitination remain elusive. We show that FANCL, the RING-bearing module in FA-CC, allosterically activates its cognate ubiqutin-conjugating enzyme E2 UBE2T to drive site-specific FANCD2 ubiquitination. Unlike typical RING E3 ligases, FANCL catalyzes ubiquitination by rewiring the intraresidue network of UBE2T to influence the active site. Consequently, a basic triad unique to UBE2T engages a structured acidic patch near the target lysine on FANCD2. This three-dimensional complementarity, between the E2 active site and substrate surface, induced by FANCL is central to site-specific monoubiquitination in the FA pathway. Furthermore, the allosteric network of UBE2T can be engineered to enhance FANCL-catalyzed FANCD2-FANCI di-monoubiquitination without compromising site specificity.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación L de la Anemia de Fanconi/metabolismo , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteína del Grupo de Complementación L de la Anemia de Fanconi/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Humanos , Unión Proteica , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/fisiología , Ubiquitinación
8.
EMBO Rep ; 21(7): e50133, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32510829

RESUMEN

The Fanconi anaemia (FA) pathway is a dedicated pathway for the repair of DNA interstrand crosslinks and is additionally activated in response to other forms of replication stress. A key step in the FA pathway is the monoubiquitination of each of the two subunits (FANCI and FANCD2) of the ID2 complex on specific lysine residues. However, the molecular function of these modifications has been unknown for nearly two decades. Here, we find that ubiquitination of FANCD2 acts to increase ID2's affinity for double-stranded DNA via promoting a large-scale conformational change in the complex. The resulting complex encircles DNA, by forming a secondary "Arm" ID2 interface. Ubiquitination of FANCI, on the other hand, largely protects the ubiquitin on FANCD2 from USP1-UAF1 deubiquitination, with key hydrophobic residues of FANCI's ubiquitin being important for this protection. In effect, both of these post-translational modifications function to stabilize a conformation in which the ID2 complex encircles DNA.


Asunto(s)
Anemia de Fanconi , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/genética , Ubiquitinación
9.
Nat Rev Mol Cell Biol ; 11(7): 479-89, 2010 07.
Artículo en Inglés | MEDLINE | ID: mdl-20551964

RESUMEN

Post-translational modification by ubiquitin is best known for its role in targeting its substrates for regulated degradation. However, non-proteolytic functions of the ubiquitin system, often involving either monoubiquitylation or polyubiquitylation through Lys63-linked chains, have emerged in various cell signalling pathways. These two forms of the ubiquitin signal contribute to three different pathways related to the maintenance of genome integrity that are responsible for the processing of DNA double-strand breaks, the repair of interstrand cross links and the bypass of lesions during DNA replication.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , Transducción de Señal , Ubiquitina/metabolismo , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Modelos Biológicos , Modelos Genéticos , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina/genética
10.
J Biol Chem ; 295(33): 11754-11763, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32587091

RESUMEN

The transcription factor NF-ĸB is a master regulator of the innate immune response and plays a central role in inflammatory diseases by mediating the expression of pro-inflammatory cytokines. Ubiquitination-triggered proteasomal degradation of DNA-bound NF-ĸB strongly limits the expression of its target genes. Conversely, USP7 (deubiquitinase ubiquitin-specific peptidase 7) opposes the activities of E3 ligases, stabilizes DNA-bound NF-ĸB, and thereby promotes NF-ĸB-mediated transcription. Using gene expression and synthetic peptide arrays on membrane support and overlay analyses, we found here that inhibiting USP7 increases NF-ĸB ubiquitination and degradation, prevents Toll-like receptor-induced pro-inflammatory cytokine expression, and represents an effective strategy for controlling inflammation. However, the broad regulatory roles of USP7 in cell death pathways, chromatin, and DNA damage responses limit the use of catalytic inhibitors of USP7 as anti-inflammatory agents. To this end, we identified an NF-ĸB-binding site in USP7, ubiquitin-like domain 2, that selectively mediates interactions of USP7 with NF-ĸB subunits but is dispensable for interactions with other proteins. Moreover, we found that the amino acids 757LDEL760 in USP7 critically contribute to the interaction with the p65 subunit of NF-ĸB. Our findings support the notion that USP7 activity could be potentially targeted in a substrate-selective manner through the development of noncatalytic inhibitors of this deubiquitinase to abrogate NF-ĸB activity.


Asunto(s)
Factor de Transcripción ReIA/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Peptidasa Específica de Ubiquitina 7/química
11.
Nat Chem Biol ; 19(12): 1438-1439, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37653168
12.
EMBO J ; 34(20): 2506-21, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26254304

RESUMEN

The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin-parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2~Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2~Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin.


Asunto(s)
Activación Enzimática/genética , Modelos Biológicos , Modelos Moleculares , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión/genética , Calorimetría , Catálisis , Cromatografía en Gel , Cristalización , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , Ubiquitina/metabolismo
13.
Biochem J ; 474(9): 1439-1451, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408429

RESUMEN

Biochemical alterations found in the brains of Parkinson's disease (PD) patients indicate that cellular stress is a major driver of dopaminergic neuronal loss. Oxidative stress, mitochondrial dysfunction, and ER stress lead to impairment of the homeostatic regulation of protein quality control pathways with a consequent increase in protein misfolding and aggregation and failure of the protein degradation machinery. Ubiquitin signalling plays a central role in protein quality control; however, prior to genetic advances, the detailed mechanisms of how impairment in the ubiquitin system was linked to PD remained mysterious. The discovery of mutations in the α-synuclein gene, which encodes the main protein misfolded in PD aggregates, together with mutations in genes encoding ubiquitin regulatory molecules, including PTEN-induced kinase 1 (PINK1), Parkin, and FBX07, has provided an opportunity to dissect out the molecular basis of ubiquitin signalling disruption in PD, and this knowledge will be critical for developing novel therapeutic strategies in PD that target the ubiquitin system.


Asunto(s)
Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Animales , Humanos , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/diagnóstico , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
EMBO Rep ; 16(8): 939-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26116755

RESUMEN

Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin activators that mimic the effect of ubiquitin(Phospho-Ser65).


Asunto(s)
Proteínas Quinasas/metabolismo , Serina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Serina/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
15.
Mol Cell ; 36(1): 39-50, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19818708

RESUMEN

In the largest E3 ligase subfamily, Cul3 binds a BTB domain, and an associated protein-interaction domain such as MATH recruits substrates for ubiquitination. Here, we present biochemical and structural analyses of the MATH-BTB protein, SPOP. We define a SPOP-binding consensus (SBC) and determine structures revealing recognition of SBCs from the phosphatase Puc, the transcriptional regulator Ci, and the chromatin component MacroH2A. We identify a dimeric SPOP-Cul3 assembly involving a conserved helical structure C-terminal of BTB domains, which we call "3-box" due to its facilitating Cul3 binding and its resemblance to F-/SOCS-boxes in other cullin-based E3s. Structural flexibility between the substrate-binding MATH and Cul3-binding BTB/3-box domains potentially allows a SPOP dimer to engage multiple SBCs found within a single substrate, such as Puc. These studies provide a molecular understanding of how MATH-BTB proteins recruit substrates to Cul3 and how their dimerization and conformational variability may facilitate avid interactions with diverse substrates.


Asunto(s)
Proteínas Cullin/química , Proteínas Nucleares/química , Proteínas Represoras/química , Ubiquitina-Proteína Ligasas/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Co-Represoras , Secuencia de Consenso/fisiología , Cristalografía por Rayos X , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutación/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Multimerización de Proteína/fisiología , Estructura Cuaternaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
16.
Biochem J ; 473(20): 3401-3419, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729585

RESUMEN

Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Humanos , Modelos Biológicos , Neoplasias/enzimología , Neoplasias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
J Biol Chem ; 290(34): 20995-21006, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26149689

RESUMEN

The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo.


Asunto(s)
Reparación del ADN , Proteínas de Drosophila/química , Proteína del Grupo de Complementación L de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Ubiquitina/química , Proteínas de Xenopus/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Anemia de Fanconi/genética , Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación L de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transducción de Señal , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
18.
Biochem Soc Trans ; 44(1): 212-27, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26862208

RESUMEN

Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation.


Asunto(s)
Enfermedad , Ubiquitina/metabolismo , Animales , Anemia de Fanconi/enzimología , Anemia de Fanconi/genética , Humanos , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
EMBO J ; 30(14): 2853-67, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21694720

RESUMEN

Parkin is an E3-ubiquitin ligase belonging to the RBR (RING-InBetweenRING-RING family), and is involved in the neurodegenerative disorder Parkinson's disease. Autosomal recessive juvenile Parkinsonism, which is one of the most common familial forms of the disease, is directly linked to mutations in the parkin gene. However, the molecular mechanisms of Parkin dysfunction in the disease state remain to be established. We now demonstrate that the ubiquitin-like domain of Parkin functions to inhibit its autoubiquitination. Moreover pathogenic Parkin mutations disrupt this autoinhibition, resulting in a constitutively active molecule. In addition, we show that the mechanism of autoregulation involves ubiquitin binding by a C-terminal region of Parkin. Our observations provide important molecular insights into the underlying basis of Parkinson's disease, and in the regulation of RBR E3-ligase activity.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Enfermedad de Parkinson/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Homeostasis , Humanos , Datos de Secuencia Molecular , Mutación/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/genética
20.
Biochem J ; 458(3): 421-37, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24576094

RESUMEN

The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.


Asunto(s)
Ubiquitina-Proteína Ligasas/química , Animales , Catálisis , Reparación del ADN , Activación Enzimática , Humanos , Proteínas de la Membrana/metabolismo , Conformación Proteica , Mapas de Interacción de Proteínas , ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA