Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2280): 20230412, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39183648

RESUMEN

The design, delivery and operation of a large-scale infrastructure project are challenging at best. For the Spherical Tokamak for Energy Production (STEP) prototype powerplant (SPP), the challenges increased dramatically. In addition to being a large-scale infrastructure project, it is a cutting edge, first of a kind (FOAK) technology demonstrator. The design teams are working in a volatile, uncertain, complex and ambiguous environment, where technology is constantly emerging, maturing and changing. STEP will be unlike any power plant ever built and requires the development of new technologies and capabilities, but also a novel approach to planning and maturing the design. By taking a holistic view of the engineering life cycle from the start, the programme will be better positioned to achieve an SPP that is fit for purpose and can be used to show a path to ultimate commercial viability for subsequent power plants. This paper will review the key challenges in maturing a FOAK fusion power plant and look in depth at how the STEP team are maturing the required capabilities and planning to ensure successful delivery of the SPP. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

2.
Philos Trans A Math Phys Eng Sci ; 382(2280): 20230414, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39183656

RESUMEN

The Spherical Tokamak for Energy Production (STEP) programme hypothesizes that a compact machine offers a route to reduced capital cost that directly tackles the barrier to entry of this potentially transformative technology. History has shown that with an unsolved, complex and highly interdependent design challenge, there is a need to balance exploration of the problem with progress. Almost all complex systems arise from the evolutionary improvement of simpler systems which is an approach the programme has adopted by working through a virtual natural selection of design families towards a single concept consistent with the initiating hypothesis. Issues are uncovered and solved more rapidly this way because the effort is focused on an end. In this current phase, STEP has had to be an agile fast-moving programme to work with what emerges as well as what was planned, to sit with uncertainty and to embrace self-organizing principles. The complex decision-making and compromises in emerging trades have led to a concept respectful of the tight aspect ratio hypothesis which carefully balances cost, performance and deliverability. It remains a high-risk and high-reward programme, but the character of the challenge is better understood building confidence and enhancing capability to advance the evolving design further.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

3.
Philos Trans A Math Phys Eng Sci ; 382(2280): 20230411, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39183652

RESUMEN

The Spherical Tokamak for Energy Production (STEP) programme is an ambitious but challenging endeavour to design and deliver a prototype fusion power plant. It is a rapid, fast-moving programme, designing a first of a kind device in a Volatile, Uncertain, Complex and Ambiguous (VUCA) environment, and digital tools play a pivotal role in managing and navigating this space. Digital helps manage the complexity and sheer volume of information. Advanced modelling and simulation techniques provide a platform for designers to explore various scenarios and iteratively refine designs, providing insights into the intricate interplay of requirements, constraints and design factors across physics, technology and engineering domains and aiding informed decision-making amidst uncertainties. It also provides a means of building confidence in the new scientific, technological and engineering solutions, given that a full-scale-integrated precursor test is not feasible, almost by definition. The digital strategy for STEP is built around a vision of a digital twin of the whole plant. This will evolve from the current digital shadow formed by system architecting codes and complex workflows and will be underpinned by developing capabilities in plasma, materials and engineering simulation, data management, advanced control, industrial cybersecurity, regulation, digital technologies and related digital disciplines. These capabilities will help address the key challenges of managing the complexity and quantity of information, improving the reliability and robustness of the current digital shadow and developing an understanding of its validity and performance.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

4.
R Soc Open Sci ; 6(10): 181847, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31824676

RESUMEN

The development of a commercial fusion power plant presents a unique set of challenges associated with the complexity of the systems, the integration of novel technologies, the likely diversity and distribution of the organizations involved, and the scale of resources required. These challenges are reviewed and compared to those for other complex engineering systems. A framework for creating a digital environment that integrates research, test, design and operational data is discussed and is based on combining the integrated nuclear digital environment (INDE), proposed recently for nuclear fission power plants, with the hierarchical pyramid of test and simulation used in the aerospace industry. The framework offers the opportunity to plan modelling strategies that allow large design domains to be explored prior to optimizing a detailed design for construction; and in this context, the relationship between measurements and predictions are explored. The use of the framework to guide the socio-technical activity associated with a distributed and collaborative design process is discussed together with its potential benefits and the technology gaps that need to be addressed in order to realize them. These benefits include shorter development times, reduced costs and improvements in credibility, operability, reliability and safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA