Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011931, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483975

RESUMEN

Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Parásitos , Sobreinfección , Animales , Humanos , Plasmodium vivax , Modelos Teóricos , Recurrencia
2.
BMC Infect Dis ; 24(1): 407, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627637

RESUMEN

BACKGROUND: Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS: To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS: We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS: Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.


Asunto(s)
COVID-19 , Epidemias , Vacunas , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Vacunación , Inmunidad Adaptativa
3.
Bull Math Biol ; 86(8): 91, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888640

RESUMEN

Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Conceptos Matemáticos , Modelos Biológicos , Control de Mosquitos , Humanos , Malaria/prevención & control , Malaria/epidemiología , Malaria/transmisión , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Animales , Mosquitos Vectores/parasitología , Prevalencia , Simulación por Computador , Anopheles/parasitología , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/estadística & datos numéricos
4.
Proc Biol Sci ; 290(2005): 20231437, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37644838

RESUMEN

Since the emergence of SARS-CoV-2 in 2019 through to mid-2021, much of the Australian population lived in a COVID-19-free environment. This followed the broadly successful implementation of a strong suppression strategy, including international border closures. With the availability of COVID-19 vaccines in early 2021, the national government sought to transition from a state of minimal incidence and strong suppression activities to one of high vaccine coverage and reduced restrictions but with still-manageable transmission. This transition is articulated in the national 're-opening' plan released in July 2021. Here, we report on the dynamic modelling study that directly informed policies within the national re-opening plan including the identification of priority age groups for vaccination, target vaccine coverage thresholds and the anticipated requirements for continued public health measures-assuming circulation of the Delta SARS-CoV-2 variant. Our findings demonstrated that adult vaccine coverage needed to be at least 60% to minimize public health and clinical impacts following the establishment of community transmission. They also supported the need for continued application of test-trace-isolate-quarantine and social measures during the vaccine roll-out phase and beyond.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Incidencia , COVID-19/epidemiología , COVID-19/prevención & control , Australia/epidemiología
5.
BMC Infect Dis ; 23(1): 28, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650474

RESUMEN

BACKGROUND: The distribution of the duration that clinical cases of COVID-19 occupy hospital beds (the 'length of stay') is a key factor in determining how incident caseloads translate into health system burden. Robust estimation of length of stay in real-time requires the use of survival methods that can account for right-censoring induced by yet unobserved events in patient progression (e.g. discharge, death). In this study, we estimate in real-time the length of stay distributions of hospitalised COVID-19 cases in New South Wales, Australia, comparing estimates between a period where Delta was the dominant variant and a subsequent period where Omicron was dominant. METHODS: Using data on the hospital stays of 19,574 individuals who tested positive to COVID-19 prior to admission, we performed a competing-risk survival analysis of COVID-19 clinical progression. RESULTS: During the mixed Omicron-Delta epidemic, we found that the mean length of stay for individuals who were discharged directly from ward without an ICU stay was, for age groups 0-39, 40-69 and 70 +, respectively, 2.16 (95% CI: 2.12-2.21), 3.93 (95% CI: 3.78-4.07) and 7.61 days (95% CI: 7.31-8.01), compared to 3.60 (95% CI: 3.48-3.81), 5.78 (95% CI: 5.59-5.99) and 12.31 days (95% CI: 11.75-12.95) across the preceding Delta epidemic (1 July 2021-15 December 2021). We also considered data on the stays of individuals within the Hunter New England Local Health District, where it was reported that Omicron was the only circulating variant, and found mean ward-to-discharge length of stays of 2.05 (95% CI: 1.80-2.30), 2.92 (95% CI: 2.50-3.67) and 6.02 days (95% CI: 4.91-7.01) for the same age groups. CONCLUSIONS: Hospital length of stay was substantially reduced across all clinical pathways during a mixed Omicron-Delta epidemic compared to a prior Delta epidemic, contributing to a lessened health system burden despite a greatly increased infection burden. Our results demonstrate the utility of survival analysis in producing real-time estimates of hospital length of stay for assisting in situational assessment and planning of the COVID-19 response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nueva Gales del Sur/epidemiología , COVID-19/epidemiología , Australia , Hospitales
7.
medRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38196597

RESUMEN

Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.

8.
Lancet Reg Health West Pac ; 28: 100573, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36089928

RESUMEN

Background: First Few "X" (FFX) studies provide a platform to collect the required epidemiological, clinical and virological data to help address emerging information needs about the COVID-19 pandemic. Methods: We adapted the WHO FFX protocol for COVID-19 to understand severity and household transmission dynamics in the early stages of the pandemic in Australia. Implementation strategies were developed for participating sites; all household members were followed for 14 days from case identification. Household contacts completed symptom diaries and had multiple respiratory swabs taken irrespective of symptoms. We modelled the spread of COVID-19 within households using a susceptible-exposed-infectious-recovered-type model, and calculated the household secondary attack rate and key epidemiological parameters. Findings: 96 households with 101 cases and 286 household contacts were recruited into the study between April-October 2020. Forty household contacts tested positive for SARS-CoV-2 in the study follow-up period. Our model estimated the household secondary attack rate to be 15% (95% CI 8-25%), which scaled up with increasing household size. Our findings suggest children were less infectious than their adult counterparts but were also more susceptible to infection. Interpretation: Our study provides important baseline data characterising the transmission of early SARS-CoV-2 strains from children and adults in Australia, against which properties of variants of concern can be benchmarked. We encountered many challenges with respect to logistics, ethics, governance and data management. Continued efforts to invest in preparedness research will help to test, refine and further develop Australian FFX study protocols in advance of future outbreaks. Funding: Australian Government Department of Health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA