Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716244

RESUMEN

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Asunto(s)
Indicán/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/sangre , Quinurenina/fisiología , Terapia Molecular Dirigida , Complicaciones Posoperatorias/enzimología , Insuficiencia Renal Crónica/enzimología , Trombosis/enzimología , Procedimientos Quirúrgicos Vasculares/efectos adversos , Animales , Aorta , Traumatismos de las Arterias Carótidas/complicaciones , Trombosis de las Arterias Carótidas/etiología , Trombosis de las Arterias Carótidas/prevención & control , Medios de Cultivo/farmacología , Inducción Enzimática/efectos de los fármacos , Retroalimentación Fisiológica , Femenino , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/efectos de los fármacos , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Insuficiencia Renal Crónica/tratamiento farmacológico , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/etiología , Trombosis/prevención & control , Triptófano/metabolismo , Uremia/sangre
2.
Kidney Int ; 97(3): 538-550, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932072

RESUMEN

Emerging evidence in animal models of chronic kidney disease (CKD) implicates Aryl Hydrocarbon Receptor (AHR) signaling as a mediator of uremic toxicity. However, details about its tissue-specific and time-dependent activation in response to various renal pathologies remain poorly defined. Here, a comprehensive analysis of AHR induction was conducted in response to discrete models of kidney diseases using a transgenic mouse line expressing the AHR responsive-promoter tethered to a ß-galactosidase reporter gene. Following validation using a canonical AHR ligand (a dioxin derivative), the transgenic mice were subjected to adenine-induced and ischemia/reperfusion-induced injury models representing CKD and acute kidney injury (AKI), respectively, in humans. Indoxyl sulfate was artificially increased in mice through the drinking water and by inhibiting its excretion into the urine. Adenine-fed mice showed a distinct and significant increase in ß-galactosidase in the proximal and distal renal tubules, cardiac myocytes, hepatocytes, and microvasculature in the cerebral cortex. The pattern of ß-galactosidase increase coincided with the changes in serum indoxyl sulfate levels. Machine-learning-based image quantification revealed positive correlations between indoxyl sulfate levels and ß-galactosidase expression in various tissues. This pattern of ß-galactosidase expression was recapitulated in the indoxyl sulfate-specific model. The ischemia/reperfusion injury model showed increase in ß-galactosidase in renal tubules that persisted despite reduction in serum indoxyl sulfate and blood urea nitrogen levels. Thus, our results demonstrate a relationship between AHR activation in various tissues of mice with CKD or AKI and the levels of indoxyl sulfate. This study demonstrates the use of a reporter gene mouse to probe tissue-specific manifestations of uremia in translationally relevant animal models and provide hypothesis-generating insights into the mechanism of uremic toxicity that warrant further investigation.


Asunto(s)
Insuficiencia Renal Crónica , Uremia , Animales , Indicán , Ratones , Ratones Transgénicos , Receptores de Hidrocarburo de Aril/genética , Insuficiencia Renal Crónica/genética
3.
BMC Med Educ ; 20(1): 423, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176776

RESUMEN

BACKGROUND: Kolb's Cycle of Learning Theory acts as a foundational framework for the evolution of knowledge gained by learners throughout their education. Through Kolb's cycle of experiential learning, one's preferred way of learning could impact academic achievement in the pre-clinical years of medical education. METHODS: The medical student classes of 2020 and 2021 at a public university in the southeastern U.S. were invited to complete Kolb's Learning Style Inventory (LSI). For those participants completing the LSI, examination results for their pre-clinical blocks were obtained and matched to the LSI results. Examination scores (locally-developed examinations and customized National Board of Medical Examiners (NBME) final examinations) were compared by LSI classification for each examination using Kruskal-Wallis Test. RESULTS: Out of 360 possible participants, 314 (87.2%) completed the Learning Style Inventory. Convergers and Assimilators made up 84.1% [Convergers (n = 177, 56.4%), Assimilators (n = 87, 27.7%)]. Accommodators (n = 25, 7.9%) and Divergers (n = 25, 7.9%) made up the remaining sample. Accomodators' scores were significantly lower on locally-developed examinations in Principles of Medicine, Hematology, and Gastrointestinal System. The only NBME examination that demonstrated a significant difference across learning styles was from the Cardiovascular block. CONCLUSIONS: Upon reviewing Kolb's LSI, our study indicated that performance on the customized NBME examinations minimized the variance in performance compared to locally-developed examinations. The lack of variance across learning styles for all but one NBME final examination appears to provide a more equitable assessment strategy.


Asunto(s)
Educación Médica , Estudiantes de Medicina , Cognición , Humanos , Aprendizaje , Aprendizaje Basado en Problemas
4.
Bioconjug Chem ; 30(6): 1702-1710, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31083974

RESUMEN

Antibody-drug conjugates utilize the antigen specificity of antibodies and the potency of chemotherapeutic and antibiotic drugs for targeted therapy. However, as cancers and bacteria evolve to resist the action of drugs, innovative controlled release methods must be engineered to deliver multidrug cocktails. In this work, we engineer lipoate-acid ligase A (LplA) acceptor peptide (LAP) tags into the constant heavy and light chain of a humanized Her2 targeted antibody, trastuzumab. These engineered LAP tags, along with the glutamine 295 (Q295) residue in the heavy chain, were used to generate orthogonally cleavable site-specific antibody conjugates via a one-pot chemoenzymatic ligation with microbial transglutaminase (mTG) and LplA. We demonstrate orthogonal cargo release from these dual-labeled antibody bioconjugates via matrix metalloproteinase-2 and cathepsin-B-mediated bond cleavage. To the best of our knowledge, this is the first demonstration of temporal control on dual-labeled antibody conjugates, and we believe this platform will allow for sequential release and cooperative drug combinations on a single antibody bioconjugate.


Asunto(s)
Antineoplásicos Inmunológicos/química , Inmunoconjugados/química , Trastuzumab/química , Antineoplásicos Inmunológicos/farmacocinética , Línea Celular Tumoral , Liberación de Fármacos , Humanos , Inmunoconjugados/farmacocinética , Modelos Moleculares , Péptido Sintasas/química , Péptidos/química , Trastuzumab/farmacocinética
5.
Bioconjug Chem ; 30(9): 2452-2457, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31409067

RESUMEN

Site-specific modification of native antibodies has proven advantageous, as it enhances the properties of antibody-based bioconjugates without the need to manipulate the genetic code. However, native antibody modification is typically limited to strategies that introduce a single functional handle. In this work, we addressed this limitation by designing heterobifunctional substrates for microbial transglutaminase (MTG) that contain both azide and methyltetrazine "click" handles. Structure-conjugation relationships for these substrates were evaluated using the Her2-targeted antibody trastuzumab. Förster resonance energy transfer (FRET) was used to demonstrate that these chemical handles are mutually orthogonal. This orthogonality was leveraged for the one-pot synthesis of a bifunctional antibody-drug conjugate (ADC). This ADC, containing a maytansine-derived payload and a hydrophobicity-masking polyethylene glycol (PEG) side chain, demonstrated potent in vitro activity in SKOV3 cells. These studies establish the dual "click" approach as a powerful technique in the toolbox for native antibody modification.


Asunto(s)
Inmunoconjugados/química , Inmunoconjugados/metabolismo , Transglutaminasas/metabolismo , Línea Celular Tumoral , Química Clic , Cisteína/química , Células HEK293 , Humanos , Microbiología , Oxidación-Reducción , Triptófano/química
6.
Bioconjug Chem ; 30(11): 2982-2988, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31671265

RESUMEN

Antibody-drug conjugates (ADCs) are an established modality for the tissue-specific delivery of chemotherapeutics. However, due to the hydrophobic nature of many cytotoxic payloads, challenges remain in developing chemically stable ADCs with high drug loading. In previous studies, payload structure, unique stimuli-responsive chemistries, and PEGylated cross-linkers have been used to decrease ADC hydrophobicity. In this work, we investigate the effect of a new parameter, cross-linker sequence. A support-free synthesis of PEGylated, sequence-defined cross-linkers was developed and applied to the synthesis of three constitutionally isomeric ADCs containing PEG side chains and a monomethyl auristatin E payload. Placement of PEG side chains distally from the payload was found to yield an ADC with altered hydrophilicity, antigen binding, and in vitro potency. This work establishes a versatile method for synthesizing multifunctional cross-linkers and identifies cross-linker sequence as a new handle for modulating the performance of ADCs.


Asunto(s)
Anticuerpos Monoclonales/química , Proliferación Celular , Reactivos de Enlaces Cruzados/química , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoconjugados/química , Inmunoconjugados/farmacología , Oligopéptidos/química , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Células Tumorales Cultivadas
7.
Bioconjug Chem ; 28(4): 907-912, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28191937

RESUMEN

Cleavable and heteromultifunctional cross-linkers have proven critical in a wide range of biological applications. Traditional approaches for synthesizing these linkers suffer from various synthetic and functional limitations. In this work, an efficient sequence-defined synthetic methodology, developed for the assembly of oligothioetheramides, was used to address many of these limitations. Four heterotrifunctional cross-linkers with up to two orthogonal internal cleavage sites were synthesized. These linkers were conjugated to a pair of fluorophores that undergo Förster resonance energy transfer (FRET) and a model protein-human transferrin. Orthogonal bond cleavage was validated by mass spectrometry, fluorescent gel electrophoresis, and confocal microscopy. These studies demonstrate the versatility and biological utility of oligothioetheramides as a new class of multifunctional chemical cross-linkers and biologically relevant fluorescent probes.


Asunto(s)
Amidas/química , Reactivos de Enlaces Cruzados/química , Colorantes Fluorescentes/química , Transferrina/química , Amidas/síntesis química , Compuestos de Boro/química , Reactivos de Enlaces Cruzados/síntesis química , Éteres/síntesis química , Éteres/química , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Microscopía Confocal , Modelos Moleculares
8.
ACS Cent Sci ; 9(6): 1160-1169, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37396857

RESUMEN

The Escherichia coli (E. coli) ribosome can incorporate a variety of non-l-α-amino acid monomers into polypeptide chains in vitro but with poor efficiency. Although these monomers span a diverse set of compounds, there exists no high-resolution structural information regarding their positioning within the catalytic center of the ribosome, the peptidyl transferase center (PTC). Thus, details regarding the mechanism of amide bond formation and the structural basis for differences and defects in incorporation efficiency remain unknown. Within a set of three aminobenzoic acid derivatives-3-aminopyridine-4-carboxylic acid (Apy), ortho-aminobenzoic acid (oABZ), and meta-aminobenzoic acid (mABZ)-the ribosome incorporates Apy into polypeptide chains with the highest efficiency, followed by oABZ and then mABZ, a trend that does not track with the nucleophilicity of the reactive amines. Here, we report high-resolution cryo-EM structures of the ribosome with each of these three aminobenzoic acid derivatives charged on tRNA bound in the aminoacyl-tRNA site (A-site). The structures reveal how the aromatic ring of each monomer sterically blocks the positioning of nucleotide U2506, thereby preventing rearrangement of nucleotide U2585 and the resulting induced fit in the PTC required for efficient amide bond formation. They also reveal disruptions to the bound water network that is believed to facilitate formation and breakdown of the tetrahedral intermediate. Together, the cryo-EM structures reported here provide a mechanistic rationale for differences in reactivity of aminobenzoic acid derivatives relative to l-α-amino acids and each other and identify stereochemical constraints on the size and geometry of non-monomers that can be accepted efficiently by wild-type ribosomes.

9.
Front Immunol ; 14: 1240946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965349

RESUMEN

Despite effective antiretroviral therapy, HIV co-morbidities remain where central nervous system (CNS) neurocognitive disorders and cardiovascular disease (CVD)-pathology that are linked with myeloid activation are most prevalent. Comorbidities such as neurocogntive dysfunction and cardiovascular disease (CVD) remain prevalent among people living with HIV. We sought to investigate if cardiac pathology (inflammation, fibrosis, cardiomyocyte damage) and CNS pathology (encephalitis) develop together during simian immunodeficiency virus (SIV) infection and if their co-development is linked with monocyte/macrophage activation. We used a cohort of SIV-infected rhesus macaques with rapid AIDS and demonstrated that SIV encephalitis (SIVE) and CVD pathology occur together more frequently than SIVE or CVD pathology alone. Their co-development correlated more strongly with activated myeloid cells, increased numbers of CD14+CD16+ monocytes, plasma CD163 and interleukin-18 (IL-18) than did SIVE or CVD pathology alone, or no pathology. Animals with both SIVE and CVD pathology had greater numbers of cardiac macrophages and increased collagen and monocyte/macrophage accumulation, which were better correlates of CVD-pathology than SIV-RNA. Animals with SIVE alone had higher levels of activated macrophage biomarkers and cardiac macrophage accumulation than SIVnoE animals. These observations were confirmed in HIV infected individuals with HIV encephalitis (HIVE) that had greater numbers of cardiac macrophages and fibrosis than HIV-infected controls without HIVE. These results underscore the notion that CNS and CVD pathologies frequently occur together in HIV and SIV infection, and demonstrate an unmet need for adjunctive therapies targeting macrophages.


Asunto(s)
Complejo SIDA Demencia , Síndrome de Inmunodeficiencia Adquirida , Enfermedades Cardiovasculares , Encefalitis , Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Virus de la Inmunodeficiencia de los Simios/fisiología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Fibrosis
10.
ACS Cent Sci ; 8(4): 473-482, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35505866

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products with potent antibiotic, antiviral, and anticancer properties. RiPP enzymes known as cyclodehydratases and dehydrogenases work together to catalyze intramolecular, inter-residue condensation and dehydrogenation reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here, we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers-including aminobenzoic acid derivatives and beta-amino acids-within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse non-α-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond-both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.

11.
J Clin Invest ; 132(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34752422

RESUMEN

Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remains elusive. Here, we show that the dietary tryptophan-derived uremic solutes including indoxyl sulfate (IS) and kynurenine (Kyn) at concentrations corresponding to those in CKD patients suppress ß-catenin in several cell types, including microvascular endothelial cells (ECs), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated ß-catenin in a manner dependent on serine 33 in its degron motif and through the aryl hydrocarbon receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute-specific mouse models showed diminished ß-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized postischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma's AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers the tryptophan metabolite/AHR/ß-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Indicán/metabolismo , Isquemia/metabolismo , Quinurenina/metabolismo , Insuficiencia Renal Crónica/metabolismo , Triptófano/metabolismo , Vía de Señalización Wnt , Anciano , Anciano de 80 o más Años , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Isquemia/etiología , Isquemia/patología , Ratones , Persona de Mediana Edad , Receptores de Hidrocarburo de Aril/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología
12.
Methods Enzymol ; 656: 495-519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34325796

RESUMEN

With few exceptions, ribosomal protein synthesis begins with methionine (or its derivative N-formyl-methionine) across all domains of life. The role of methionine as the initiating amino acid is dictated by the unique structure of its cognate tRNA known as tRNAfMet. By mis-acylating tRNAfMet, we and others have shown that protein synthesis can be initiated with a variety of canonical and noncanonical amino acids both in vitro and in vivo. Furthermore, because the α-amine of the initiating amino acid is not required for peptide bond formation, translation can be initiated with a variety of structurally disparate carboxylic acids that bear little resemblance to traditional α-amino acids. Herein, we provide a detailed protocol to initiate in vitro protein synthesis with substituted benzoic acid and 1,3-dicarbonyl compounds. These moieties are introduced at the N-terminus of peptides by mis-acylated tRNAfMet, prepared by flexizyme-catalyzed tRNA acylation. In addition, we describe a protocol to initiate in vivo protein synthesis with aromatic noncanonical amino acids (ncAAs). This method relies on an engineered chimeric initiator tRNA that is acylated with ncAAs by an orthogonal aminoacyl-tRNA synthetase. Together, these systems are useful platforms for producing N-terminally modified proteins and for engineering the protein synthesis machinery of Escherichia coli to accept additional nonproteinogenic carboxylic acid monomers.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Escherichia coli/genética , Péptidos , Proteínas , ARN de Transferencia/genética
13.
Med Sci Educ ; 29(3): 619-623, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34457523

RESUMEN

BACKGROUND: There has been an emphasis on the implementation of self-directed learning in medical education. Kolb's experiential learning theory could be a useful framework in curriculum development. ACTIVITY: During the 2016-2017 academic year, participants completed the learning styles inventory. Percent time dedicated to lecture, laboratory, small groups, modules, simulations, and exams was collected along with participant academic performance. RESULTS: Findings showed that the curriculum delivery accommodated Assimilators and Convergers, with Convergers primarily outscoring the other categories. DISCUSSION: Although efforts emphasized self-directed learning, the curriculum is still delivered by lectures. Based on Kolb's theory, lecturing benefits Converger and Assimilator learning styles.

14.
Cell Chem Biol ; 26(12): 1643-1651.e4, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31604616

RESUMEN

Degradable crosslinkers that respond to intracellular biological stimuli are a critical component of many drug delivery systems. With numerous stimuli-responsive drug delivery systems in development, it is important to quantitatively study their intracellular processing. Herein we report a framework for quantifying the rate of intracellular bond degradation in the endocytic pathway. Toward this end, we devised and synthesized a reduction-sensitive FRET-based crosslinker that can be readily conjugated to a variety of targeting ligands. This crosslinker was conjugated to trastuzumab, a humanized monoclonal antibody against the HER2 receptor. We developed a model based on mass-action kinetics to describe the intracellular processing of this conjugate. The kinetic model was developed in conjunction with live-cell experiments to extract the rate constant for intracellular disulfide bond degradation. This framework may be applied to other endocytosis pathways, bond types, and cell types to quantify this fundamental degradation rate parameter.


Asunto(s)
Inmunoconjugados/metabolismo , Trastuzumab/metabolismo , Compuestos de Boro/química , Compuestos de Boro/metabolismo , Línea Celular Tumoral , Disulfuros/química , Disulfuros/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Glutatión/química , Semivida , Humanos , Inmunoconjugados/inmunología , Cinética , Microscopía Confocal , Modelos Teóricos , Receptor ErbB-2/inmunología , Rodaminas/química , Rodaminas/metabolismo , Transglutaminasas/metabolismo , Trastuzumab/inmunología
15.
Sci Rep ; 9(1): 16891, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729453

RESUMEN

We introduce machine learning (ML) to perform classification and quantitation of images of nuclei from human blood neutrophils. Here we assessed the use of convolutional neural networks (CNNs) using free, open source software to accurately quantitate neutrophil NETosis, a recently discovered process involved in multiple human diseases. CNNs achieved >94% in performance accuracy in differentiating NETotic from non-NETotic cells and vastly facilitated dose-response analysis and screening of the NETotic response in neutrophils from patients. Using only features learned from nuclear morphology, CNNs can distinguish between NETosis and necrosis and between distinct NETosis signaling pathways, making them a precise tool for NETosis detection. Furthermore, by using CNNs and tools to determine object dispersion, we uncovered differences in NETotic nuclei clustering between major NETosis pathways that is useful in understanding NETosis signaling events. Our study also shows that neutrophils from patients with sickle cell disease were unresponsive to one of two major NETosis pathways. Thus, we demonstrate the design, performance, and implementation of ML tools for rapid quantitative and qualitative cell analysis in basic science.


Asunto(s)
Diagnóstico por Imagen/métodos , Trampas Extracelulares/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Neutrófilos/patología , Muerte Celular/fisiología , Humanos , Necrosis/metabolismo , Necrosis/patología , Redes Neurales de la Computación , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
16.
J Acquir Immune Defic Syndr ; 74(5): 583-592, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28141779

RESUMEN

BACKGROUND: Despite effective combination antiretroviral therapy, HIV-infected individuals develop comorbidities, including cardiovascular disease, where activated macrophages play a key role. To date, few therapies target activated monocytes and macrophages. METHODS: We evaluated a novel oral form of the polyamine biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone (MGBG) on cardiovascular inflammation, carotid artery intima-media thickness (cIMT), and fibrosis in a simian immunodeficiency virus infection model of AIDS. Eleven simian immunodeficiency virus-infected animals received MGBG (30 mg/kg) once daily and 8 received a placebo control both beginning at 21 days postinfection (dpi). Animals were time sacrificed at 49 days post infection (dpi), when their matched placebo controls developed AIDS (63, 70, 77, 80), or at the study end-point (84 dpi). Aorta, carotid artery, and cardiac tissues were analyzed. Quantitative analyses of macrophage populations and T lymphocytes were done and correlated with cIMT and fibrosis. RESULTS: MGBG treatment resulted in 2.19-fold (CD163), 1.86-fold (CD68), 2.31-fold (CD206), and 2.12-fold (MAC387) decreases in macrophages in carotid arteries and significant 2.07-fold (CD163), 1.61-fold (CD68), 1.95-fold (MAC387), and 1.62-fold (CD206) decreases in macrophages in cardiac tissues. cIMT (1.49-fold) and fibrosis (2.05-fold) also were significantly decreased with MGBG treatment. Numbers of macrophage and the degree of fibrosis in treated animals were similar to uninfected animals. A positive correlation between decreased macrophage in the carotid artery and cIMT, and cardiac macrophages and fibrosis was found. CONCLUSIONS: These data demonstrate that directly targeting macrophages with MGBG can reduce cardiovascular inflammation, cIMT, and fibrosis. They suggest that therapies targeting macrophages with HIV could be used in conjunction with combination antiretroviral therapy.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Factores Inmunológicos/administración & dosificación , Inflamación/patología , Macrófagos/efectos de los fármacos , Mitoguazona/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Animales , Arterias Carótidas/patología , Fibrosis/patología , Factores Inmunológicos/farmacología , Macaca mulatta , Macrófagos/inmunología , Mitoguazona/farmacología , Placebos/administración & dosificación , Resultado del Tratamiento , Túnica Íntima/patología
17.
J Am Heart Assoc ; 4(7)2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26185285

RESUMEN

BACKGROUND: Cardiovascular disease (CVD), myocarditis and fibrosis are comorbidities of HIV(+) individuals on durable antiretroviral therapy (ART). Although mechanisms for these vary, monocytes/macrophages are increasingly demonstrated to be key players. METHODS AND RESULTS: We directly blocked monocyte/macrophage traffic to the heart in an SIV model of AIDS using an anti-alpha-4 integrin antibody (natalizumab). Nineteen Rhesus macaques were SIVmac251 infected and CD8-lymphocyte depleted for the development of rapid AIDS. Ten animals received natalizumab once a week, for 3 weeks, and were sacrificed 1 week later. Six animals began treatment at the time of infection (early) and the remaining 4 began treatment 28 days post-infection (late), a time point we have previously established when significant cardiac inflammation occurs. Nine animals were untreated controls; of these, 3 were sacrificed early and 6 were sacrificed late. At necropsy, we found decreased SIV-associated cardiac pathology in late natalizumab-treated animals, compared to untreated controls. Early and late treatment resulted in significant reductions in numbers of CD163(+) and CD68(+) macrophages in cardiac tissues, compared to untreated controls, and a trend in decreasing numbers of newly recruited MAC387(+) and BrdU(+) (recruited) monocytes/macrophages. In late treated animals, decreased macrophage numbers in cardiac tissues correlated with decreased fibrosis. Early and late treatment resulted in decreased cardiomyocyte damage. CONCLUSIONS: These data demonstrate a role for macrophages in the development of cardiac inflammation and fibrosis, and suggest that blocking monocyte/macrophage traffic to the heart can alleviate HIV- and SIV-associated myocarditis and fibrosis. They underscore the importance of targeting macrophage activation and traffic as an adjunctive therapy in HIV infection.


Asunto(s)
Cardiomiopatías/prevención & control , Quimiotaxis/efectos de los fármacos , Factores Inmunológicos/farmacología , Integrina alfa4/inmunología , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Miocarditis/prevención & control , Miocardio/inmunología , Natalizumab/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Cardiomiopatías/diagnóstico , Cardiomiopatías/inmunología , Cardiomiopatías/metabolismo , Cardiomiopatías/virología , Citoprotección , Modelos Animales de Enfermedad , Fibrosis , Huésped Inmunocomprometido , Integrina alfa4/metabolismo , Macaca mulatta , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/virología , Miocarditis/diagnóstico , Miocarditis/inmunología , Miocarditis/metabolismo , Miocarditis/virología , Miocardio/metabolismo , Miocardio/patología , Receptores de Superficie Celular/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/diagnóstico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Factores de Tiempo
18.
AIDS Res Hum Retroviruses ; 30(7): 685-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24524407

RESUMEN

The role of macrophage activation, traffic, and accumulation on cardiac pathology was examined in 23 animals. Seventeen animals were simian immunodeficiency virus (SIV) infected, 12 were CD8 lymphocyte depleted, and the remaining six were uninfected controls (two CD8 lymphocyte depleted, four nondepleted). None of the uninfected controls had cardiac pathology. One of five (20%) SIV-infected, non-CD8 lymphocyte-depleted animals had minor cardiac pathology with increased numbers of macrophages in ventricular tissue compared to controls. Seven of the 12 (58%) SIV-infected, CD8 lymphocyte-depleted animals had cardiac pathology in ventricular tissues, including macrophage infiltration and myocardial degeneration. The extent of fibrosis (measured as the percentage of collagen per tissue area) was increased 41% in SIV-infected, CD8 lymphocyte-depleted animals with cardiac pathology compared to animals without pathological abnormalities. The number of CD163+ macrophages increased significantly in SIV-infected, CD8 lymphocyte-depleted animals with cardiac pathology compared to ones without pathology (1.66-fold) and controls (5.42-fold). The percent of collagen (percentage of collagen per total tissue area) positively correlated with macrophage numbers in ventricular tissue in SIV-infected animals. There was an increase of BrdU+ monocytes in the heart during late SIV infection, regardless of pathology. These data implicate monocyte/macrophage activation and accumulation in the development of cardiac pathology with SIV infection.


Asunto(s)
Antígenos CD/sangre , Antígenos de Diferenciación Mielomonocítica/sangre , Macrófagos/inmunología , Miocarditis/patología , Miocardio/patología , Receptores de Superficie Celular/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Bromodesoxiuridina/análisis , Linfocitos T CD8-positivos/inmunología , Fibrosis , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/inmunología , Ventrículos Cardíacos/patología , Depleción Linfocítica , Macaca mulatta , Activación de Macrófagos/inmunología , Monocitos/inmunología , Monocitos/patología , Miocarditis/virología , Miocardio/inmunología , ARN Viral/análisis , Receptores de Superficie Celular/inmunología , Estudios Retrospectivos , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Proteínas Virales de Fusión/análisis , Carga Viral
19.
Channels (Austin) ; 5(6): 475-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22082832

RESUMEN

KCC2 comprises the major Cl(-) extruding mechanism in most adult neurons. Hyperpolarizing GABAergic transmission depends on KCC2 function. We recently demonstrated that glutamate reduces KCC2 function by a phosphorylation-dependent mechanism that leads to excitatory GABA responses. Here we investigated the methods by which to estimate changes in E(GABA), as well as the processes that lead to depolarizing GABA responses and their effects on neuronal excitability. We demonstrated that current-clamp recordings of membrane potential responses to GABA can determine upper and lower limits of E(GABA). We also further characterized depolarizing GABA responses, which both excited and inhibited neurons. Our analyses revealed that persistently active GABA(A) receptors contributed to loading Cl(-) during the glutamate exposure, indicating that tonic inhibition can facilitate the development of depolarizing GABA responses and increase excitability after pathophysiological insults. Finally, we demonstrated that hyperpolarizing GABA responses could temporarily switch to depolarizing responses when they coincided with an afterhyperpolarization.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Potenciales de la Membrana/fisiología , Receptores de GABA-A/metabolismo , Simportadores/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Cloruros/metabolismo , Humanos , Transporte Iónico/fisiología , Cotransportadores de K Cl
20.
Nat Neurosci ; 14(6): 736-43, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21532577

RESUMEN

KCC2 is a neuron-specific K(+)-Cl(-) co-transporter that maintains a low intracellular Cl(-) concentration that is essential for hyperpolarizing inhibition mediated by GABA(A) receptors. Deficits in KCC2 activity occur in disease states associated with pathophysiological glutamate release. However, the mechanisms by which elevated glutamate alters KCC2 function are unknown. The phosphorylation of KCC2 residue Ser940 is known to regulate its surface activity. We found that NMDA receptor activity and Ca(2+) influx caused the dephosphorylation of Ser940 in dissociated rat neurons, leading to a loss of KCC2 function that lasted longer than 20 min. Protein phosphatase 1 mediated the dephosphorylation events of Ser940 that coincided with a deficit in hyperpolarizing GABAergic inhibition resulting from the loss of KCC2 activity. Blocking dephosphorylation of Ser940 reduced the glutamate-induced downregulation of KCC2 and substantially improved the maintenance of hyperpolarizing GABAergic inhibition. Reducing the downregulation of KCC2 therefore has therapeutic potential in the treatment of neurological disorders.


Asunto(s)
Hipocampo/citología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Simportadores/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Regulación hacia Abajo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Ratas , Serina/metabolismo , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA