RESUMEN
Aging is often associated with reduced leg blood flow, increased arterial stiffness, and endothelial dysfunction, all of which are related to declining nitric oxide (NO) bioavailability. Flow mediated dilatation (FMD) and passive leg movement (PLM) hyperaemia are two techniques used to measure NO-dependent vascular function. We hypothesised that acute dietary nitrate (NO3-) supplementation would improve NO bioavailability, leg FMD, and PLM hyperaemia. Fifteen healthy older men (69 ± 4 years) attended two experiment sessions and consumed either 140 mL of concentrated beetroot juice (800 mg NO3-) or placebo (NO3--depleted beetroot juice) in a randomised, double blind, cross-over design study. Plasma nitrite (NO2-) and NO3-, blood pressure (BP), augmentation index (AIx75), pulse wave velocity (PWV), FMD of the superficial femoral artery, and PLM hyperaemia were measured immediately before and 2.5 h after consuming NO3- and placebo. Placebo had no effect but NO3- led to an 8.6-fold increase in plasma NO2-, which was accompanied by an increase in FMD (NO3-: +1.18 ± 0.94% vs. placebo: 0.23 ± 1.13%, p = 0.002), and a reduction in AIx75 (NO3-: -8.7 ± 11.6% vs. placebo: -4.6 ± 5.5%, p = 0.027). PLM hyperaemia, BP, and PWV were unchanged during both trials. This study showed that a dose of dietary NO3- improved NO bioavailability and enhanced endothelial function as measured by femoral artery FMD. These findings provide insight into the specific central and peripheral vascular responses to dietary NO3- supplementation in older adults.
Asunto(s)
Arteria Femoral/efectos de los fármacos , Nitratos/administración & dosificación , Nitratos/farmacología , Vasodilatación/efectos de los fármacos , Anciano , Presión Sanguínea , Suplementos Dietéticos , Arteria Femoral/fisiología , Humanos , Masculino , Persona de Mediana Edad , Nitratos/sangreRESUMEN
BACKGROUND: Peripheral arterial disease (PAD) is characterised by impaired leg blood flow, which contributes to claudication and reduced exercise capacity. This study investigated to what extent vasoactive enzymes might contribute to altered blood flow in PAD (Fontaine stage II). METHODS: We compared femoral artery blood flow during reactive hyperaemia, leg-extension exercise and passive leg movement, and determined the level of vasoactive enzymes in skeletal muscle samples from the vastus lateralis in PAD (n = 10, 68.5 ± 6.5 years) and healthy controls (CON, n = 9, 62.1 ± 12.3 years). Leg blood flow was measured with Doppler ultrasound and muscle protein levels of phosphorylated endothelial nitric oxide synthase, NADPH oxidase, cyclooxygenase 1 and 2, thromboxane synthase, and prostacyclin synthase were determined. RESULTS: Leg blood flow during the initial 90 s of passive leg movement (242 ± 33 vs 441 ± 75 ml min(-1), P = 0.03) and during reactive hyperaemia (423 ± 100 vs 1255 ± 175 ml min(-1), P = 0.002) was lower in PAD than CON, whereas no significant difference was observed for leg blood flow during exercise (1490 ± 250 vs 1887 ± 349 ml min(-1), P = 0.37). PAD had higher NADPH oxidase than CON (1.04 ± 0.19 vs 0.50 ± 0.06 AU, P = 0.02), with no differences for other enzymes. Leg blood flow during exercise was correlated with prostacyclin synthase (P = 0.001). CONCLUSION: Elevated NADPH oxidase indicates that oxidative stress may be a primary cause of low nitric oxide availability and impaired blood flow in PAD.