Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(3): 499-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407176

RESUMEN

We characterized the spatial distribution of drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB) cases in Ho Chi Minh City, Vietnam, a major metropolis in southeastern Asia, and explored demographic and socioeconomic factors associated with local TB burden. Hot spots of DS and MDR TB incidence were observed in the central parts of Ho Chi Minh City, and substantial heterogeneity was observed across wards. Positive spatial autocorrelation was observed for both DS TB and MDR TB. Ward-level TB incidence was associated with HIV prevalence and the male proportion of the population. No ward-level demographic and socioeconomic indicators were associated with MDR TB case count relative to total TB case count. Our findings might inform spatially targeted TB control strategies and provide insights for generating hypotheses about the nature of the relationship between DS and MDR TB in Ho Chi Minh City and the wider southeastern region of Asia.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Masculino , Humanos , Vietnam/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Asia , Análisis Espacial
2.
N Engl J Med ; 384(6): 533-540, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33369366

RESUMEN

BACKGROUND: The relationship between the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the risk of subsequent reinfection remains unclear. METHODS: We investigated the incidence of SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) in seropositive and seronegative health care workers attending testing of asymptomatic and symptomatic staff at Oxford University Hospitals in the United Kingdom. Baseline antibody status was determined by anti-spike (primary analysis) and anti-nucleocapsid IgG assays, and staff members were followed for up to 31 weeks. We estimated the relative incidence of PCR-positive test results and new symptomatic infection according to antibody status, adjusting for age, participant-reported gender, and changes in incidence over time. RESULTS: A total of 12,541 health care workers participated and had anti-spike IgG measured; 11,364 were followed up after negative antibody results and 1265 after positive results, including 88 in whom seroconversion occurred during follow-up. A total of 223 anti-spike-seronegative health care workers had a positive PCR test (1.09 per 10,000 days at risk), 100 during screening while they were asymptomatic and 123 while symptomatic, whereas 2 anti-spike-seropositive health care workers had a positive PCR test (0.13 per 10,000 days at risk), and both workers were asymptomatic when tested (adjusted incidence rate ratio, 0.11; 95% confidence interval, 0.03 to 0.44; P = 0.002). There were no symptomatic infections in workers with anti-spike antibodies. Rate ratios were similar when the anti-nucleocapsid IgG assay was used alone or in combination with the anti-spike IgG assay to determine baseline status. CONCLUSIONS: The presence of anti-spike or anti-nucleocapsid IgG antibodies was associated with a substantially reduced risk of SARS-CoV-2 reinfection in the ensuing 6 months. (Funded by the U.K. Government Department of Health and Social Care and others.).


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Personal de Salud , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Femenino , Humanos , Inmunoglobulina G/sangre , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Recurrencia , SARS-CoV-2/aislamiento & purificación , Seroconversión , Reino Unido , Adulto Joven
3.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38466092

RESUMEN

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Humanos , Tuberculosis Meníngea/diagnóstico , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Meníngea/líquido cefalorraquídeo , Mycobacterium tuberculosis/genética , Pirazinamida , Sensibilidad y Especificidad , Rifampin/farmacología , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Líquido Cefalorraquídeo , Pruebas de Sensibilidad Microbiana
4.
J Clin Microbiol ; 61(3): e0157822, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815861

RESUMEN

Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited, and targeted molecular assays are vulnerable to emerging resistance mutations. Improved protocols for direct-from-sputum Mycobacterium tuberculosis sequencing would accelerate access to comprehensive drug susceptibility testing and molecular typing. We assessed a thermo-protection buffer-based direct-from-sample M. tuberculosis whole-genome sequencing protocol. We prospectively analyzed 60 acid-fast bacilli smear-positive clinical sputum samples in India and Madagascar. A diversity of semiquantitative smear positivity-level samples were included. Sequencing was performed using Illumina and MinION (monoplex and multiplex) technologies. We measured the impact of bacterial inoculum and sequencing platforms on genomic read depth, drug susceptibility prediction performance, and typing accuracy. M. tuberculosis was identified by direct sputum sequencing in 45/51 samples using Illumina, 34/38 were identified using MinION-monoplex sequencing, and 20/24 were identified using MinION-multiplex sequencing. The fraction of M. tuberculosis reads from MinION sequencing was lower than from Illumina, but monoplexing grade 3+ samples on MinION produced higher read depth than Illumina (P < 0.05) and MinION multiplexing (P < 0.01). No significant differences in sensitivity and specificity of drug susceptibility predictions were seen across sequencing modalities or within each technology when stratified by smear grade. Illumina sequencing from sputum accurately identified 1/8 (rifampin) and 6/12 (isoniazid) resistant samples, compared to 2/3 (rifampin) and 3/6 (isoniazid) accurately identified with Nanopore monoplex. Lineage agreement levels between direct and culture-based sequencing were 85% (MinION-monoplex), 88% (Illumina), and 100% (MinION-multiplex). M. tuberculosis direct-from-sample whole-genome sequencing remains challenging. Improved and affordable sample treatment protocols are needed prior to clinical deployment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida , Rifampin , Pruebas de Sensibilidad Microbiana , Esputo/microbiología , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Genómica , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
5.
J Clin Microbiol ; 61(4): e0163422, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37010411

RESUMEN

Offering patients with tuberculosis (TB) an optimal and timely treatment regimen depends on the rapid detection of Mycobacterium tuberculosis (Mtb) drug resistance from clinical samples. Finding Low Abundance Sequences by Hybridization (FLASH) is a technique that harnesses the efficiency, specificity, and flexibility of the Cas9 enzyme to enrich targeted sequences. Here, we used FLASH to amplify 52 candidate genes probably associated with resistance to first- and second-line drugs in the Mtb reference strain (H37Rv), then detect drug resistance mutations in cultured Mtb isolates, and in sputum samples. 92% of H37Rv reads mapped to Mtb targets, with 97.8% of target regions covered at a depth ≥ 10X. Among cultured isolates, FLASH-TB detected the same 17 drug resistance mutations as whole genome sequencing (WGS) did, but with much greater depth. Among the 16 sputum samples, FLASH-TB increased recovery of Mtb DNA compared with WGS (from 1.4% [IQR 0.5-7.5] to 33% [IQR 4.6-66.3]) and average depth reads of targets (from 6.3 [IQR 3.8-10.5] to 1991 [IQR 254.4-3623.7]). FLASH-TB identified Mtb complex in all 16 samples based on IS1081 and IS6110 copies. Drug resistance predictions for 15/16 (93.7%) clinical samples were highly concordant with phenotypic DST for isoniazid, rifampicin, amikacin, and kanamycin [15/15 (100%)], ethambutol [12/15 (80%)] and moxifloxacin [14/15 (93.3%)]. These results highlighted the potential of FLASH-TB for detecting Mtb drug resistance from sputum samples.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis/tratamiento farmacológico , Mycobacterium tuberculosis/genética , Pruebas de Sensibilidad Microbiana
6.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34414415

RESUMEN

Antimicrobial resistance (AMR) poses a threat to global public health. To mitigate the impacts of AMR, it is important to identify the molecular mechanisms of AMR and thereby determine optimal therapy as early as possible. Conventional machine learning-based drug-resistance analyses assume genetic variations to be homogeneous, thus not distinguishing between coding and intergenic sequences. In this study, we represent genetic data from Mycobacterium tuberculosis as a graph, and then adopt a deep graph learning method-heterogeneous graph attention network ('HGAT-AMR')-to predict anti-tuberculosis (TB) drug resistance. The HGAT-AMR model is able to accommodate incomplete phenotypic profiles, as well as provide 'attention scores' of genes and single nucleotide polymorphisms (SNPs) both at a population level and for individual samples. These scores encode the inputs, which the model is 'paying attention to' in making its drug resistance predictions. The results show that the proposed model generated the best area under the receiver operating characteristic (AUROC) for isoniazid and rifampicin (98.53 and 99.10%), the best sensitivity for three first-line drugs (94.91% for isoniazid, 96.60% for ethambutol and 90.63% for pyrazinamide), and maintained performance when the data were associated with incomplete phenotypes (i.e. for those isolates for which phenotypic data for some drugs were missing). We also demonstrate that the model successfully identifies genes and SNPs associated with drug resistance, mitigating the impact of resistance profile while considering particular drug resistance, which is consistent with domain knowledge.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleótido Simple
7.
Clin Infect Dis ; 74(7): 1208-1219, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216472

RESUMEN

BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Estudios de Cohortes , Personal de Salud , Humanos , Inmunoglobulinas , Incidencia , Estudios Longitudinales , Vacunación
8.
Clin Infect Dis ; 73(3): e699-e709, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33400782

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS: We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS: Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19-31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81-90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSIONS: SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Antivirales , Formación de Anticuerpos , Teorema de Bayes , Personal de Salud , Humanos , Inmunoglobulina G , Estudios Seroepidemiológicos
9.
PLoS Med ; 18(10): e1003816, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637439

RESUMEN

BACKGROUND: Nosocomial spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been widely reported, but the transmission pathways among patients and healthcare workers (HCWs) are unclear. Identifying the risk factors and drivers for these nosocomial transmissions is critical for infection prevention and control interventions. The main aim of our study was to quantify the relative importance of different transmission pathways of SARS-CoV-2 in the hospital setting. METHODS AND FINDINGS: This is an observational cohort study using data from 4 teaching hospitals in Oxfordshire, United Kingdom, from January to October 2020. Associations between infectious SARS-CoV-2 individuals and infection risk were quantified using logistic, generalised additive and linear mixed models. Cases were classified as community- or hospital-acquired using likely incubation periods of 3 to 7 days. Of 66,184 patients who were hospitalised during the study period, 920 had a positive SARS-CoV-2 PCR test within the same period (1.4%). The mean age was 67.9 (±20.7) years, 49.2% were females, and 68.5% were from the white ethnic group. Out of these, 571 patients had their first positive PCR tests while hospitalised (62.1%), and 97 of these occurred at least 7 days after admission (10.5%). Among the 5,596 HCWs, 615 (11.0%) tested positive during the study period using PCR or serological tests. The mean age was 39.5 (±11.1) years, 78.9% were females, and 49.8% were nurses. For susceptible patients, 1 day in the same ward with another patient with hospital-acquired SARS-CoV-2 was associated with an additional 7.5 infections per 1,000 susceptible patients (95% credible interval (CrI) 5.5 to 9.5/1,000 susceptible patients/day) per day. Exposure to an infectious patient with community-acquired Coronavirus Disease 2019 (COVID-19) or to an infectious HCW was associated with substantially lower infection risks (2.0/1,000 susceptible patients/day, 95% CrI 1.6 to 2.2). As for HCW infections, exposure to an infectious patient with hospital-acquired SARS-CoV-2 or to an infectious HCW were both associated with an additional 0.8 infection per 1,000 susceptible HCWs per day (95% CrI 0.3 to 1.6 and 0.6 to 1.0, respectively). Exposure to an infectious patient with community-acquired SARS-CoV-2 was associated with less than half this risk (0.2/1,000 susceptible HCWs/day, 95% CrI 0.2 to 0.2). These assumptions were tested in sensitivity analysis, which showed broadly similar results. The main limitations were that the symptom onset dates and HCW absence days were not available. CONCLUSIONS: In this study, we observed that exposure to patients with hospital-acquired SARS-CoV-2 is associated with a substantial infection risk to both HCWs and other hospitalised patients. Infection control measures to limit nosocomial transmission must be optimised to protect both staff and patients from SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Infecciones Comunitarias Adquiridas , Infección Hospitalaria/epidemiología , Personal de Salud , Hospitales , Transmisión de Enfermedad Infecciosa de Paciente a Profesional , Transmisión de Enfermedad Infecciosa de Profesional a Paciente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/transmisión , Estudios de Cohortes , Femenino , Hospitalización , Hospitales/estadística & datos numéricos , Humanos , Control de Infecciones , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/estadística & datos numéricos , Transmisión de Enfermedad Infecciosa de Profesional a Paciente/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Enfermeras y Enfermeros , Factores de Riesgo , SARS-CoV-2 , Reino Unido/epidemiología
10.
BMC Infect Dis ; 21(1): 187, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602152

RESUMEN

BACKGROUND: Thresholds for SARS-CoV-2 antibody assays have typically been determined using samples from symptomatic, often hospitalised, patients. In this setting the sensitivity and specificity of the best performing assays can both exceed 98%. However, antibody assay performance following mild infection is less clear. METHODS: We assessed quantitative IgG responses in a cohort of healthcare workers in Oxford, UK, with a high pre-test probability of Covid-19, in particular the 991/11,475(8.6%) who reported loss of smell/taste. We use anosmia/ageusia and other risk factors as probes for Covid-19 infection potentially undiagnosed by immunoassays by investigating their relationship with antibody readings either side of assay thresholds. RESULTS: The proportion of healthcare workers reporting anosmia/ageusia increased at antibody readings below diagnostic thresholds using an in-house ELISA (n = 9324) and the Abbott Architect chemiluminescent microparticle immunoassay (CMIA; n = 11,324): 426/906 (47%) reported anosmia/ageusia with a positive ELISA, 59/449 (13.1%) with high-negative and 326/7969 (4.1%) with low-negative readings. Similarly, by CMIA, 518/1093 (47.4%) with a positive result reported anosmia/ageusia, 106/686 (15.5%) with a high-negative and 358/9563 (3.7%) with a low-negative result. Adjusting for the proportion of staff reporting anosmia/ageusia suggests the sensitivity of both assays in mild infection is lower than previously reported: Oxford ELISA 89.8% (95%CI 86.6-92.8%) and Abbott CMIA 79.3% (75.9-82.7%). CONCLUSION: Following mild SARS-CoV-2 infection 10-30% of individuals may have negative immunoassay results. While lowered diagnostic thresholds may result in unacceptable specificity, our findings have implications for epidemiological analyses and result interpretation in individuals with a high pre-test probability. Samples from mild PCR-confirmed infections should be included in SARS-CoV-2 immunoassay evaluations.


Asunto(s)
Anticuerpos Antivirales/análisis , Prueba Serológica para COVID-19/normas , COVID-19/diagnóstico , Inmunoglobulina G/análisis , Adulto , Ageusia/virología , Anosmia/virología , Infecciones Asintomáticas , Ensayo de Inmunoadsorción Enzimática/normas , Femenino , Personal de Salud , Humanos , Inmunoensayo/normas , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Enfermedades no Diagnosticadas , Reino Unido
11.
Clin Infect Dis ; 71(10): e532-e539, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32166306

RESUMEN

BACKGROUND: Meta-analysis of patients with isoniazid-resistant tuberculosis (TB) given standard first-line anti-TB treatment indicated an increased risk of multidrug-resistant TB (MDR-TB) emerging (8%), compared to drug-sensitive TB (0.3%). Here we use whole genome sequencing (WGS) to investigate whether treatment of patients with preexisting isoniazid-resistant disease with first-line anti-TB therapy risks selecting for rifampicin resistance, and hence MDR-TB. METHODS: Patients with isoniazid-resistant pulmonary TB were recruited and followed up for 24 months. Drug susceptibility testing was performed by microscopic observation drug susceptibility assay, mycobacterial growth indicator tube, and by WGS on isolates at first presentation and in the case of re-presentation. Where MDR-TB was diagnosed, WGS was used to determine the genomic relatedness between initial and subsequent isolates. De novo emergence of MDR-TB was assumed where the genomic distance was 5 or fewer single-nucleotide polymorphisms (SNPs), whereas reinfection with a different MDR-TB strain was assumed where the distance was 10 or more SNPs. RESULTS: Two hundred thirty-nine patients with isoniazid-resistant pulmonary TB were recruited. Fourteen (14/239 [5.9%]) patients were diagnosed with a second episode of TB that was multidrug resistant. Six (6/239 [2.5%]) were identified as having evolved MDR-TB de novo and 6 as having been reinfected with a different strain. In 2 cases, the genomic distance was between 5 and 10 SNPs and therefore indeterminate. CONCLUSIONS: In isoniazid-resistant TB, de novo emergence and reinfection of MDR-TB strains equally contributed to MDR development. Early diagnosis and optimal treatment of isoniazid-resistant TB are urgently needed to avert the de novo emergence of MDR-TB during treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Isoniazida/farmacología , Estudios Longitudinales , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Secuenciación Completa del Genoma
12.
Bioinformatics ; 35(18): 3240-3249, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30689732

RESUMEN

MOTIVATION: Resistance co-occurrence within first-line anti-tuberculosis (TB) drugs is a common phenomenon. Existing methods based on genetic data analysis of Mycobacterium tuberculosis (MTB) have been able to predict resistance of MTB to individual drugs, but have not considered the resistance co-occurrence and cannot capture latent structure of genomic data that corresponds to lineages. RESULTS: We used a large cohort of TB patients from 16 countries across six continents where whole-genome sequences for each isolate and associated phenotype to anti-TB drugs were obtained using drug susceptibility testing recommended by the World Health Organization. We then proposed an end-to-end multi-task model with deep denoising auto-encoder (DeepAMR) for multiple drug classification and developed DeepAMR_cluster, a clustering variant based on DeepAMR, for learning clusters in latent space of the data. The results showed that DeepAMR outperformed baseline model and four machine learning models with mean AUROC from 94.4% to 98.7% for predicting resistance to four first-line drugs [i.e. isoniazid (INH), ethambutol (EMB), rifampicin (RIF), pyrazinamide (PZA)], multi-drug resistant TB (MDR-TB) and pan-susceptible TB (PANS-TB: MTB that is susceptible to all four first-line anti-TB drugs). In the case of INH, EMB, PZA and MDR-TB, DeepAMR achieved its best mean sensitivity of 94.3%, 91.5%, 87.3% and 96.3%, respectively. While in the case of RIF and PANS-TB, it generated 94.2% and 92.2% sensitivity, which were lower than baseline model by 0.7% and 1.9%, respectively. t-SNE visualization shows that DeepAMR_cluster captures lineage-related clusters in the latent space. AVAILABILITY AND IMPLEMENTATION: The details of source code are provided at http://www.robots.ox.ac.uk/∼davidc/code.php. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Mycobacterium tuberculosis , Antituberculosos , Pruebas de Sensibilidad Microbiana , Pirazinamida
13.
Bioinformatics ; 35(13): 2276-2282, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462147

RESUMEN

MOTIVATION: Timely identification of Mycobacterium tuberculosis (MTB) resistance to existing drugs is vital to decrease mortality and prevent the amplification of existing antibiotic resistance. Machine learning methods have been widely applied for timely predicting resistance of MTB given a specific drug and identifying resistance markers. However, they have been not validated on a large cohort of MTB samples from multi-centers across the world in terms of resistance prediction and resistance marker identification. Several machine learning classifiers and linear dimension reduction techniques were developed and compared for a cohort of 13 402 isolates collected from 16 countries across 6 continents and tested 11 drugs. RESULTS: Compared to conventional molecular diagnostic test, area under curve of the best machine learning classifier increased for all drugs especially by 23.11%, 15.22% and 10.14% for pyrazinamide, ciprofloxacin and ofloxacin, respectively (P < 0.01). Logistic regression and gradient tree boosting found to perform better than other techniques. Moreover, logistic regression/gradient tree boosting with a sparse principal component analysis/non-negative matrix factorization step compared with the classifier alone enhanced the best performance in terms of F1-score by 12.54%, 4.61%, 7.45% and 9.58% for amikacin, moxifloxacin, ofloxacin and capreomycin, respectively, as well increasing area under curve for amikacin and capreomycin. Results provided a comprehensive comparison of various techniques and confirmed the application of machine learning for better prediction of the large diverse tuberculosis data. Furthermore, mutation ranking showed the possibility of finding new resistance/susceptible markers. AVAILABILITY AND IMPLEMENTATION: The source code can be found at http://www.robots.ox.ac.uk/ davidc/code.php. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos , Humanos , Aprendizaje Automático
14.
Clin Infect Dis ; 69(9): 1631-1633, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30883637

RESUMEN

Tuberculosis is the primary infectious disease killer worldwide, with a growing threat from multidrug-resistant cases. Unfortunately, classic growth-based phenotypic drug susceptibility testing (DST) remains difficult, costly, and time consuming, while current rapid molecular testing options are limited by the diversity of antimicrobial-resistant genotypes that can be detected at once. Next-generation sequencing (NGS) offers the opportunity for rapid, comprehensive DST without the time or cost burden of phenotypic tests and can provide useful information for global surveillance. As access to NGS expands, it will be important to ensure that results are communicated clearly, consistent, comparable between laboratories, and associated with clear guidance on clinical interpretation of results. In this viewpoint article, we summarize 2 expert workshops regarding a standardized report format, focusing on relevant variables, terminology, and required minimal elements for clinical and laboratory reports with a proposed standardized template for clinical reporting NGS results for Mycobacterium tuberculosis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Análisis de Secuencia de ADN , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/genética
15.
Bioinformatics ; 34(10): 1666-1671, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29240876

RESUMEN

Motivation: Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Summary: Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Results: Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4-8% for other drugs (P < 0.01). Availability and implementation: The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. Contact: david.clifton@eng.ox.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Antituberculosos/uso terapéutico , Aprendizaje Automático , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN/métodos , Tuberculosis Resistente a Múltiples Medicamentos/genética , Ciprofloxacina/uso terapéutico , Etambutol/uso terapéutico , Humanos , Isoniazida/uso terapéutico , Pruebas de Sensibilidad Microbiana , Moxifloxacino/uso terapéutico , Mycobacterium tuberculosis/clasificación , Ofloxacino/uso terapéutico , Pirazinamida/uso terapéutico , Rifampin/uso terapéutico , Estreptomicina/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
16.
Artículo en Inglés | MEDLINE | ID: mdl-29941636

RESUMEN

The UKMYC5 plate is a 96-well microtiter plate designed by the CRyPTIC Consortium (Comprehensive Resistance Prediction for Tuberculosis: an International Consortium) to enable the measurement of MICs of 14 different antituberculosis (anti-TB) compounds for >30,000 clinical Mycobacterium tuberculosis isolates. Unlike the MYCOTB plate, on which the UKMYC5 plate is based, the UKMYC5 plate includes two new (bedaquiline and delamanid) and two repurposed (clofazimine and linezolid) compounds. UKMYC5 plates were tested by seven laboratories on four continents by use of a panel of 19 external quality assessment (EQA) strains, including H37Rv. To assess the optimal combination of reading method and incubation time, MICs were measured from each plate by two readers, using three methods (mirrored box, microscope, and Vizion digital viewing system), after 7, 10, 14, and 21 days of incubation. In addition, all EQA strains were subjected to whole-genome sequencing and phenotypically characterized by the 7H10/7H11 agar proportion method (APM) and by use of MGIT960 mycobacterial growth indicator tubes. We concluded that the UKMYC5 plate is optimally read using the Vizion system after 14 days of incubation, achieving an interreader agreement of 97.9% and intra- and interlaboratory reproducibility rates of 95.6% and 93.1%, respectively. The mirrored box had a similar reproducibility. Strains classified as resistant by APM, MGIT960, or the presence of mutations known to confer resistance consistently showed elevated MICs compared to those for strains classified as susceptible. Finally, the UKMYC5 plate records intermediate MICs for one strain for which the APM measured MICs close to the applied critical concentration, providing early evidence that the UKMYC5 plate can quantitatively measure the magnitude of resistance to anti-TB compounds that is due to specific genetic variation.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/farmacología , Oxazoles/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico , Clofazimina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Reproducibilidad de los Resultados
17.
Microbiology (Reading) ; 164(12): 1522-1530, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30351270

RESUMEN

M. tuberculosis grows slowly and is challenging to work with experimentally compared with many other bacteria. Although microtitre plates have the potential to enable high-throughput phenotypic testing of M. tuberculosis, they can be difficult to read and interpret. Here we present a software package, the Automated Mycobacterial Growth Detection Algorithm (AMyGDA), that measures how much M. tuberculosis is growing in each well of a 96-well microtitre plate. The plate used here has serial dilutions of 14 anti-tuberculosis drugs, thereby permitting the MICs to be elucidated. The three participating laboratories each inoculated 38 96-well plates with 15 known M. tuberculosis strains (including the standard H37Rv reference strain) and, after 2 weeks' incubation, measured the MICs for all 14 drugs on each plate and took a photograph. By analysing the images, we demonstrate that AMyGDA is reproducible, and that the MICs measured are comparable to those measured by a laboratory scientist. The AMyGDA software will be used by the Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) to measure the drug susceptibility profile of a large number (>30000) of samples of M. tuberculosis from patients over the next few years.


Asunto(s)
Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana/instrumentación , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Automatización de Laboratorios , Pruebas Diagnósticas de Rutina , Farmacorresistencia Bacteriana , Procesamiento de Imagen Asistido por Computador , Mycobacterium tuberculosis/crecimiento & desarrollo , Reproducibilidad de los Resultados , Programas Informáticos
18.
Eur Respir J ; 51(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29748309

RESUMEN

We used whole-genome sequencing (WGS) to delineate transmission networks and investigate the benefits of WGS during cluster investigation.We included clustered cases of multidrug-resistant (MDR) tuberculosis (TB)/extensively drug-resistant (XDR) TB linked by mycobacterial interspersed repetitive unit variable tandem repeat (MIRU-VNTR) strain typing or epidemiological information in the national cluster B1006, notified between 2007 and 2013 in the UK. We excluded from further investigation cases whose isolates differed by greater than 12 single nucleotide polymorphisms (SNPs). Data relating to patients' social networks were collected.27 cases were investigated and 22 had WGS, eight of which (36%) were excluded as their isolates differed by more than 12 SNPs to other cases. 18 cases were ruled into the transmission network based on genomic and epidemiological information. Evidence of transmission was inconclusive in seven out of 18 cases (39%) in the transmission network following WGS and epidemiological investigation.This investigation of a drug-resistant TB cluster illustrates the opportunities and limitations of WGS in understanding transmission in a setting with a high proportion of migrant cases. The use of WGS should be combined with classical epidemiological methods. However, not every cluster will be solvable, regardless of the quality of genomic data.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Polimorfismo de Nucleótido Simple , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Secuenciación Completa del Genoma , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Brotes de Enfermedades , Tuberculosis Extensivamente Resistente a Drogas/transmisión , Humanos , Repeticiones de Minisatélite , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Reino Unido/epidemiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-28137812

RESUMEN

In this study, using the Hain GenoType MTBDRsl assays (versions 1 and 2), we found that some nonsynonymous and synonymous mutations in gyrA in Mycobacterium tuberculosis result in systematic false-resistance results to fluoroquinolones by preventing the binding of wild-type probes. Moreover, such mutations can prevent the binding of mutant probes designed for the identification of specific resistance mutations. Although these mutations are likely rare globally, they occur in approximately 7% of multidrug-resistant tuberculosis strains in some settings.


Asunto(s)
Antituberculosos/farmacología , Girasa de ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Fluoroquinolonas/farmacología , Mutación , Mycobacterium tuberculosis/genética , Bioensayo , Girasa de ADN/metabolismo , Reacciones Falso Positivas , Expresión Génica , Humanos , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Sondas de Oligonucleótidos/química , Sondas de Oligonucleótidos/metabolismo , Filogenia , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
20.
J Clin Microbiol ; 55(5): 1285-1298, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28275074

RESUMEN

Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.


Asunto(s)
Antituberculosos/uso terapéutico , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN/métodos , Tuberculosis Pulmonar/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Sistemas de Atención de Punto , Pirazinamida/uso terapéutico , Factores de Tiempo , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA