Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Opt Express ; 28(23): 34246-34254, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182898

RESUMEN

The development of new quantum light sources requires robust and convenient methods of characterizing their joint spectral properties. Measuring the joint spectral intensity between a photon pair ignores any correlations in spectral phase which may be responsible for degrading the quality of quantum interference. A fully phase-sensitive characterization tends to require significantly more experimental complexity. Here, we investigate the sensitivity of the frequency-resolved double-pair emission to spectral phase correlations, in particular to the presence of a simple form of correlated phase which can be generated by a chirped pump laser pulse. We observe interference fringes in the four photon coincidences which depend on the frequencies of all four photons, with a period which depends on the strength of their correlation. We also show that phase correlations in the JSA induce spectral intensity correlations between two signal photons, even when the corresponding idler photons are not detected, and link this correlation pattern to the purity of a single signal photon. These effects will be useful in assessing new photon-pair sources for quantum technologies, especially since we require little additional complexity compared to a joint spectral intensity measurement - essentially just the ability to detect at least two photons in each output port.

2.
Opt Express ; 28(4): 5147-5163, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121741

RESUMEN

We report a bright and tunable source of spectrally pure heralded single photons in the telecom O-Band, based on cross-polarized four wave mixing in a commercial birefringent optical fiber. The source can achieve a purity of 85%, heralding efficiency of 30% and a coincidence-to-accidentals ratio of 108. Furthermore, through the measurements of joint spectral intensities, we find that the fiber is homogeneous over at least 45 centimeters and thus can potentially realize 4 sources that can produce identical quantum states of light. This paves the way for a cost-effective fiber-optic approach to implement multi-photon quantum optics experiments.

3.
Phys Rev Lett ; 125(11): 117401, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975978

RESUMEN

We report the observation of a mode associated with a topological defect in the bulk of a 2D photonic material by introducing a vortex distortion to a hexagonal lattice analogous to graphene. The observed modes lie midgap at zero energy and are closely related to Majorana bound states in superconducting vortices. This is the first experimental demonstration of the Jackiw-Rossi model [R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981)NUPBBO0550-321310.1016/0550-3213(81)90044-4].

4.
Phys Rev Lett ; 125(12): 123603, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016763

RESUMEN

One of the central principles of quantum mechanics is that if there are multiple paths that lead to the same event and there is no way to distinguish between them, interference occurs. It is often assumed that distinguishing information in the preparation, evolution, or measurement of a system is sufficient to destroy interference. However, it is still possible for photons in distinguishable, separable states to interfere due to the indistinguishability of paths corresponding to possible exchange processes. Here we experimentally measure an interference signal that depends only on the multiparticle interference of four photons in a four-port interferometer despite pairs of them occupying distinguishable states.

5.
Phys Rev Lett ; 124(2): 023602, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-32004012

RESUMEN

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

6.
Opt Express ; 27(24): 35646-35658, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878733

RESUMEN

Multi-photon interference in large multi-port interferometers is key to linear optical quantum computing and in particular to boson sampling. Silicon photonics enables complex interferometric circuits with many components in a small footprint and has the potential to extend these experiments to larger numbers of interfering modes. However, loss has generally limited the implementation of multi-photon experiments in this platform. Here, we make use of high-efficiency grating couplers to combine bright and pure quantum light sources based on ppKTP waveguides with silicon circuits. We interfere up to 5 photons in up to 15 modes, verifying genuine multi-photon interference by comparing the results against various models including partial distinguishability between photons.

7.
Opt Express ; 27(19): 26842-26857, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31674557

RESUMEN

The development of large-scale optical quantum information processing circuits ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate a reconfigurable 8×8 integrated linear optical network based on silicon nitride waveguides for quantum information processing. Our processor implements a novel optical architecture enabling any arbitrary linear transformation and constitutes the largest programmable circuit reported so far on this platform. We validate a variety of photonic quantum information processing primitives, in the form of Hong-Ou-Mandel interference, bosonic coalescence/anti-coalescence and high-dimensional single-photon quantum gates. We achieve fidelities that clearly demonstrate the promising future for large-scale photonic quantum information processing using low-loss silicon nitride.

8.
Phys Rev Lett ; 122(6): 063601, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822048

RESUMEN

Strong light-matter interactions are critical for quantum technologies based on light, such as memories or nonlinear interactions. Solid state materials will be particularly important for such applications due to the relative ease of fabrication of components. Silicon vacancy centers (SiV^{-}) in diamond feature especially narrow inhomogeneous spectral lines, which are rare in solid materials. Here, we demonstrate resonant coherent manipulation, stimulated Raman adiabatic passage, and strong light-matter interaction via the four-wave mixing of a weak signal field in an ensemble of SiV^{-} centers.

9.
Phys Rev Lett ; 122(11): 110601, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30951320

RESUMEN

The ability of the internal states of a working fluid to be in a coherent superposition is one of the basic properties of a quantum heat engine. It was recently predicted that in the regime of small engine action, this ability can enable a quantum heat engine to produce more power than any equivalent classical heat engine. It was also predicted that in the same regime, the presence of such internal coherence causes different types of quantum heat engines to become thermodynamically equivalent. Here, we use an ensemble of nitrogen vacancy centers in diamond for implementing two types of quantum heat engines, and experimentally observe both effects.

10.
Opt Express ; 26(19): 24678-24686, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469580

RESUMEN

Direct UV-written waveguides are fabricated in silica-on-silicon with birefringence of (4.9 ± 0.2) × 10-4, much greater than previously reported in this platform. We show that these waveguides are suitable for the generation of heralded single photons at telecommunication wavelengths by spontaneous four-wave mixing. A pulsed pump field at 1060 nm generates pairs of photons in highly detuned, spectrally uncorrelated modes near 1550 nm and 800 nm. Waveguide-to-fiber coupling efficiencies of 78-91 % are achieved for all fields. Waveguide birefringence is controlled through dopant concentration of GeCl4 and BCl3 using the flame hydrolysis deposition process. The technology provides a route towards the scalability of silica-on-silicon integrated components for photonic quantum experiments.

11.
Phys Rev Lett ; 118(15): 153603, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28452506

RESUMEN

Quantum interference of two independent particles in pure quantum states is fully described by the particles' distinguishability: the closer the particles are to being identical, the higher the degree of quantum interference. When more than two particles are involved, the situation becomes more complex and interference capability extends beyond pairwise distinguishability, taking on a surprisingly rich character. Here, we study many-particle interference using three photons. We show that the distinguishability between pairs of photons is not sufficient to fully describe the photons' behavior in a scattering process, but that a collective phase, the triad phase, plays a role. We are able to explore the full parameter space of three-photon interference by generating heralded single photons and interfering them in a fiber tritter. Using multiple degrees of freedom-temporal delays and polarization-we isolate three-photon interference from two-photon interference. Our experiment disproves the view that pairwise two-photon distinguishability uniquely determines the degree of nonclassical many-particle interference.

12.
Phys Rev Lett ; 119(13): 130504, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341700

RESUMEN

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

13.
Phys Rev Lett ; 116(5): 050401, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26894692

RESUMEN

We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

14.
Opt Lett ; 40(23): 5582-5, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625056

RESUMEN

Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depths could only be generated for seconds, at most once per day, severely limiting the practicality of the technology. Here we report the generation of the highest observed transient (>10(5) for up to a minute) and highest observed persistent (>2000 for hours) optical depths of alkali vapors in a light-guiding geometry to date, using a cesium-filled Kagomé-type hollow-core photonic crystal fiber (HC-PCF). Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

15.
Phys Rev Lett ; 114(21): 210801, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066422

RESUMEN

Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

16.
Opt Express ; 22(18): 21719-26, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321548

RESUMEN

We present a practical method for active phase control on a photonic chip that has immediate applications in quantum photonics. Our approach uses strain-optic modification of the refractive index of individual waveguides, effected by a millimeter-scale mechanical actuator. The resulting phase change of propagating optical fields is rapid and polarization-dependent, enabling quantum applications that require active control and polarization encoding. We demonstrate strain-optic control of non-classical states of light in silica, showing the generation of 2-photon polarisation N00N states by manipulating Hong-Ou-Mandel interference. We also demonstrate switching times of a few microseconds, which are sufficient for silica-based feed-forward control of photonic quantum states.

17.
Opt Lett ; 39(21): 6142-5, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361299

RESUMEN

We present the simultaneous spatial characterization of two independent sources of high harmonic radiation from a series of interferograms. Our technique transfers the necessity of replicating and shearing the test beam to a second, independent beam that may be easier to manipulate, and thus opens the possibility to characterize complex light sources. We demonstrate our technique by reconstructing the wavefronts of two high harmonic beams and use this information to study the spatial properties of different quantum paths.

18.
Phys Rev Lett ; 113(13): 130502, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302876

RESUMEN

We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

19.
Sci Adv ; 10(15): eadi7346, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608017

RESUMEN

A hybrid interface of solid-state single-photon sources and atomic quantum memories is a long sought-after goal in photonic quantum technologies. Here, we demonstrate deterministic storage and retrieval of light from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths. We store single photons from an indium arsenide quantum dot in a high-bandwidth rubidium vapor-based quantum memory, with a total internal memory efficiency of (12.9 ± 0.4)%. The signal-to-noise ratio of the retrieved light field is 18.2 ± 0.6, limited only by detector dark counts.

20.
Opt Express ; 21(1): 893-902, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23388983

RESUMEN

Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA