Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Control Release ; 370: 528-542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705520

RESUMEN

Reversing the aggravated immunosuppression hence overgrowth of colorectal cancer (CRC) caused by the gut inflammation and microbiota dysbiosis is pivotal for effective CRC therapy and metastasis inhibition. However, the low delivery efficiency and severe dose-limiting off-target toxicities caused by unsatisfied drug delivery systems remain the major obstacles in precisely modulating gut inflammation and microbiota in CRC therapy. Herein, a multifunctional oral dextran-aspirin nanomedicine (P3C-Asp) was utilized for oral treatment of primary CRC, as it could release salicylic acid (SA) while scavenging reactive oxygen species (ROS) and held great potential in modulating gut microbiota with prebiotic (dextran). Oral P3C-Asp retained in CRC tissues for over 12 h and significantly increased SA accumulation in CRC tissues over free aspirin (10.8-fold at 24 h). The enhanced SA accumulation and ROS scavenging of P3C-Asp cooperatively induced more potent inflammation relief over free aspirin, characterized as lower level of cyclooxygenase-2 and immunosuppressive cytokines. Remarkably, P3C-Asp promoted the microbiota homeostasis and notably increased the relative abundance of strengthening systemic anti-cancer immune response associated microbiota, especially lactobacillus and Akkermansia to 6.66- and 103- fold over the control group. Additionally, a demonstrable reduction in pathogens associated microbiota (among 96% to 79%) including Bacteroides could be detected. In line with our findings, inflammation relief along with enhanced abundance of lactobacillus was positively correlated with CRC inhibition. In primary CRC model, P3C-Asp achieved 2.1-fold tumor suppression rate over free aspirin, with an overall tumor suppression rate of 85%. Moreover, P3C-Asp cooperated with αPD-L1 further reduced the tumor weight of each mouse and extended the median survival of mice by 29 days over αPD-L1 alone. This study unravels the synergistic effect of gut inflammation and microbiota modulation in primary CRC treatment, and unlocks an unconventional route for immune regulation in TME with oral nanomedicine.


Asunto(s)
Aspirina , Neoplasias Colorrectales , Dextranos , Microbioma Gastrointestinal , Homeostasis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Aspirina/administración & dosificación , Aspirina/uso terapéutico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Homeostasis/efectos de los fármacos , Administración Oral , Dextranos/administración & dosificación , Dextranos/química , Nanomedicina , Ratones Endogámicos BALB C , Inflamación/tratamiento farmacológico , Masculino , Ratones , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Nanopartículas/administración & dosificación , Línea Celular Tumoral , Femenino
2.
Cancer Biother Radiopharm ; 33(10): 445-459, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30133308

RESUMEN

Background: To study the distribution and imaging of 99mTc-nGO-PEG-FA in human pancreatic cancer Patu8988 tumor-bearing nude mice, and to explore its usefulness as an imaging reagent for pancreatic cancer. Materials and Methods: Natural graphite powder was used as raw material to prepare the nanosized graphene oxide (nGO) by using the modified Hummers method, and then was covalently modified by polyethylene glycol (PEG) on the surface of nGO. The nGO was further optimized by in vitro cell experiment, and then conjugated with the targeting molecule folic acid (FA) to form nGO-PEG-FA system. The nGO-PEG-FA was finally labeled by radioactive nuclide 99mTc by direct labeling method to form the 99mTc-nGO-PEG-FA molecular imaging probe. Nude mice bearing patu8988 pancreatic cancer xenografts were intravenous injection (I.V.) injected with 99mTc-nGO-PEG-FA, and the distribution of 99mTc-nGO-PEG-FA in nude mice at different time course was investigated by determination of tissue uptake of radioactivity (%ID/g), as well as the single photon emission computed tomography (SPECT) imaging at different time course. Results: The labeling rate of nGO-PEG-FA with 99mTc was (90.08 ± 2.34)%, and the highest binding rate of 99mTc-nGO-PEG-FA with Patu8988 cells was (3.15 ± 0.31)%. The radioactive uptake in tumor reached (5.11 ± 1.23)%ID/g at 6 h after I.V. injection of 99mTc-nGO-PEG-FA in nude mice. Meanwhile, the radioactive uptake in liver, spleen, and lung was also high and reached (10.33 ± 1.22)%ID/g, (5.86 ± 0.59)%ID/g, and (3.55 ± 0.93)%ID/g, respectively, whereas less radioactivity uptake was observed in the heart (1.12 ± 0.33)%ID/g and blood (2.76 ± 0.39)%ID/g, respectively. The tumors can be clearly imaged at 4.0-6.0 h after 99mTc-nGO-PEG-FA injection. Conclusions: 99mTc-nGO-PEG-FA can efficiently target pancreatic cancer, which may be developed as an imaging agent for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/diagnóstico por imagen , Xenoinjertos/diagnóstico por imagen , Trasplante de Neoplasias/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Radiofármacos/análisis , Tomografía Computarizada de Emisión de Fotón Único , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Estabilidad de Medicamentos , Humanos , Ratones , Ratones Desnudos , Estructura Molecular , Especificidad de Órganos , Radiofármacos/farmacocinética , Radiofármacos/toxicidad , Distribución Aleatoria , Suero , Espectrofotometría Ultravioleta , Distribución Tisular
3.
Cancer Biother Radiopharm ; 30(4): 160-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25853522

RESUMEN

Hypoxia can stimulate (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in cultured tumor cells. This study has investigated the effect of lentiviral vector-mediated RNA interference (RNAi) targeting hypoxia-inducible factor 1α (HIF-1α) on the changes in HIF-1 and glucose transporter 1 (Glut-1) expression, the cell growth, and the uptake of (18)F-FDG in the human pancreatic cancer cell line, Patu8988. Lentiviral RNAi vector targeting the HIF-1α gene (LV-HIF-1αRNAi) was constructed and used to treat cells at various concentrations (25-200 nM). The expression changes of HIF-1α and Glut-1 in hypoxic Patu8988 cells after RNAi treatment were determined using real time reverse transcription-polymerase chain reaction (real-time PCR). The inhibition rate of cell proliferation 48 hours after the addition of 10 µL of different concentrations of LV-HIF-1αRNAi (25-200 nM) was assayed using the MTT method. Meanwhile, the cell uptake of (18)F-FDG was also assessed. After RNAi transfection, the relative expression levels of HIF-1α mRNA and Glut-1 under hypoxia were reduced and the relative expression levels of HIF-1α protein also decreased. Compared with the control group, the inhibition rates of cell proliferation under different viral dosages were 5.98%, 15.65%, 26.42%, and 40.81%, respectively, positively correlated with the viral doses (r=0.558, p<0.05). Under hypoxia, Glut-1 mRNA expression in Patu8988 cells treated with 200 nM of LV-HIF-1αRNAi for 24, 48, and 72 hours, respectively, was positively correlated with the inhibition rate of cell proliferation (r=0.618, p<0.05) as well as the inhibition rate of (18)F-FDG uptake (r=0.664, p<0.05), while the latter two displayed a positive correlation with each other too (r=0.582, p<0.05). Under hypoxia, RNAi targeting HIF-1α significantly inhibited the expression of Glut-1 mRNA in Patu8988 pancreatic cancer cells and their uptake of (18)F-FDG. These results suggest that LV-HIF-1αRNAi may form a new treatment for pancreatic cancer, and the effectiveness of the treatment can be readily assessed with (18)F-FDG imaging.


Asunto(s)
Fluorodesoxiglucosa F18/metabolismo , Vectores Genéticos/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lentivirus/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferencia de ARN/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Transportador de Glucosa de Tipo 1/genética , Humanos , ARN Mensajero/genética , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA