Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Cell ; 35(8): 2887-2909, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37132483

RESUMEN

The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Fosforilación , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 118(5): 1358-1371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341799

RESUMEN

Watercore is a common physiological disease of Rosaceae plants, such as apples (Malus domestica), usually occurring during fruit ripening. Apple fruit with watercore symptoms is prone to browning and rotting, thus losing commercial viability. Sorbitol and calcium ions are considered key factors affecting watercore occurrence in apples. However, the mechanism by which they affect the occurrence of watercore remains unclear. Here, we identified that the transcription factor MdWRKY9 directly binds to the promoter of MdSOT2, positively regulates the transcription of MdSOT2, increases sorbitol content in fruit, and promotes watercore occurrence. Additionally, MdCRF4 can directly bind to MdWRKY9 and MdSOT2 promoters, positively regulating their expression. Since calcium ions can induce the ubiquitination and degradation of the transcription factor MdCRF4, they can inhibit the transcription of MdWRKY9 and MdSOT2 by degrading MdCRF4, thereby reducing the sorbitol content in fruit and inhibiting the occurrence of fruit watercore disease. Our data sheds light on how calcium ions mitigate watercore in fruit, providing molecular-level insights to enhance fruit quality artificially.


Asunto(s)
Calcio , Frutas , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Sorbitol , Factores de Transcripción , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Calcio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sorbitol/metabolismo , Regiones Promotoras Genéticas/genética
3.
Plant Physiol ; 192(3): 1711-1717, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37002826

RESUMEN

During ripening, fleshy fruits undergo irreversible changes in color, texture, sugar content, aroma, and flavor to appeal to seed-dispersal vectors. The onset of climacteric fruit ripening is accompanied by an ethylene burst. Understanding the factors triggering this ethylene burst is important for manipulating climacteric fruit ripening. Here, we review the current understanding and recent insights into the possible factors triggering climacteric fruit ripening: DNA methylation and histone modification, including methylation and acetylation. Understanding the initiation factors of fruit ripening is important for exploring and accurately regulating the mechanisms of fruit ripening. Lastly, we discuss the potential mechanisms responsible for climacteric fruit ripening.


Asunto(s)
Climaterio , Frutas , Frutas/genética , Etilenos , Epigénesis Genética
4.
Plant Physiol ; 191(1): 694-714, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36287070

RESUMEN

The plant hormone ethylene plays a central role in the ripening of climacteric fruits, such as apple (Malus domestica). Ethylene biosynthesis in apple fruit can be suppressed by calcium ions (Ca2+); however, the underlying mechanism is largely unknown. In this study, we identified an apple APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor, MdCYTOKININ RESPONSE FACTOR4 (MdCRF4), which functions as a transcriptional activator of ethylene biosynthesis- and signaling-related genes, including Md1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE1 (MdACS1) and MdETHYLENE-RESPONSIVE FACTOR3 (MdERF3), as a partner of the calcium sensor, calmodulin. Ca2+ promoted the Ca2+/CaM2-mediated phosphorylation of MdCRF4, resulting in MdCRF4 recognition by the E3 ubiquitin ligase MdXB3 ORTHOLOG 1 IN ARABIDOPSIS THALIANA (MdXBAT31), and consequently its ubiquitination and degradation via the 26S proteasome pathway. This in turn resulted in lower expression of MdACS1 and MdERF3 and reduced ethylene biosynthesis. Transiently overexpressing various MdCRF4 proteins with specific mutated phosphorylation sites revealed that the phosphorylation state of MdCRF4 affects the ripening of apple fruit. The results reveal that a Ca2+/CaM-MdCRF4-MdXBAT31 module is involved in Ca2+-suppressed ethylene biosynthesis, which delays apple fruit ripening. This provides insights into fruit ripening that may result in strategies for extending fruit shelf life.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Calcio/metabolismo , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Plant Physiol ; 191(4): 2475-2488, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653326

RESUMEN

Ethylene biosynthesis in apple (Malus domestica) fruit can be suppressed by calcium ions (Ca2+) during storage; however, the underlying mechanisms are unclear. In this study, we identified the apple transcription factor MCM1-AGAMOUS-DEFICIENS-SRF5 (MdMADS5), which functions as a transcriptional activator of the ethylene biosynthesis-related gene 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE1 (MdACS1), a partner of the calcium sensor CALCIUM-DEPENDENT PROTEIN KINASES7 (MdCDPK7). Ca2+ promoted the MdCDPK7-mediated phosphorylation of MdMADS5, which resulted in the degradation of MdMADS5 via the 26S proteasome pathway. MdCDPK7 also phosphorylated 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID OXIDASE1 (MdACO1), the key enzyme in ethylene biosynthesis, leading to MdACO1 degradation and inhibition of ethylene biosynthesis. Our results reveal that Ca2+/MdCDPK7-MdMADS5 and Ca2+/MdCDPK7-MdACO1 are involved in Ca2+-suppressed ethylene biosynthesis, which delays apple fruit ripening. These findings provide insights into fruit ripening, which may lead to the development of strategies for extending the shelf life of fruit.


Asunto(s)
Malus , Malus/metabolismo , Calcio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fosforilación , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo
6.
Plant Cell Rep ; 42(6): 1089-1105, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062789

RESUMEN

KEY MESSAGE: In our study, we demonstrated that histone acetylation promotes anthocyanin accumulation in pears by affecting the expression of key genes. Color is an important trait of horticultural plants, and the anthocyanin content directly affects the nutritional value and commercial value of colored fruits. Therefore, it is important for fruit breeding to cultivate new varieties with bright colors. 'Nanhong' (NH) pear (Pyrus ussuriensis) is a bud sport cultivar of 'Nanguo' (NG) pear. The anthocyanin content in NH pear is significantly higher than that in NG pear, but the underlying molecular mechanism remains unclear. Here, we observed that the anthocyanin biosynthesis structural gene PuUFGT (UDP-glucose: flavonoids 3-O-glucosyltransferase) and an anthocyanin transporter gene PuGSTF6 (glutathione S-transferase) had significantly higher expression levels in NH than in NG pears during the late stages of fruit development. Meanwhile, the R2R3-MYB transcription factor PuMYB110a was also highly expressed in NH pears and could positively regulate the transcription of PuUFGT and PuGSTF6. Overexpression of PuMYB110a in pear increased the fruit anthocyanin content. In addition, despite no significant differences in methylation levels being found in the promoters of PuMYB110a, PuUFGT, and PuGSTF6 when comparing the two varieties, the histone acetylation levels of PuMYB110a were significantly higher in NH pear compared with those in NG pear. Our findings suggest a mechanism for anthocyanin accumulation in NH fruit.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Antocianinas/metabolismo , Histonas/metabolismo , Fitomejoramiento , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant J ; 108(1): 169-182, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34296800

RESUMEN

Chlorophyll (Chl) degradation is a natural phenomenon that occurs during ripening in many fleshy fruit species, and also during fruit storage. The plant hormone ethylene is a key factor in promoting Chl degradation during fruit storage, but the mechanisms involved in this induction are largely unknown. In this study, an apple (Malus domestica) BEL1-LIKE HOMEODOMAIN transcription factor 7 (MdBEL7), potentially functioning as a transcriptional repressor of the Chl catabolic genes (CCGs), including MdCLH, MdPPH2 and MdRCCR2, was identified as a partner of the ethylene-activated U-box type E3 ubiquitin ligase MdPUB24 in a yeast library screen. Yeast-two-hybrid, co-immunoprecipitation and luciferase complementation imaging assays were then used to verify the interaction between MdBEL7 and MdPUB24. In vitro and in vivo ubiquitination experiments revealed that MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdBEL7, thereby causing its degradation through the 26S proteasome pathway. Transient overexpression of MdPUB24 in apple fruit led to a decrease in MdBEL7 abundance and increased expression of CCG genes, including MdCLH, MdPPH2 and MdRCCR2, as well as greater Chl degradation. Taken together, the data indicated that an ethylene-activated U-box type E3 ubiquitin ligase MdPUB24 directly interacts with and ubiquitinates MdBEL7. Consequent degradation of MdBEL7 results in enhanced expression of MdCLH, MdPPH2 and MdRCCR2, and thus Chl degradation during apple fruit storage. Our results reveal that an ethylene-MdPUB24-MdBEL7 module regulates Chl degradation by post-translational modification during apple fruit storage.


Asunto(s)
Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/fisiología , Malus/fisiología , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Ubiquitinación
8.
New Phytol ; 234(5): 1714-1734, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35254663

RESUMEN

Nitric oxide (NO) is known to modulate the action of several phytohormones. This includes the gaseous hormone ethylene, but the molecular mechanisms underlying the effect of NO on ethylene biosynthesis are unclear. Here, we observed a decrease in endogenous NO abundance during apple (Malus domestica) fruit development and exogenous treatment of apple fruit with a NO donor suppressed ethylene production, suggesting that NO is a ripening suppressor. Expression of the transcription factor MdERF5 was activated by NO donor treatment. NO induced the nucleocytoplasmic shuttling of MdERF5 by modulating its interaction with the protein phosphatase, MdPP2C57. MdPP2C57-induced dephosphorylation of MdERF5 at Ser260 is sufficient to promote nuclear export of MdERF5. As a consequence of this export, MdERF5 proteins in the cytoplasm interacted with and suppressed the activity of MdACO1, an enzyme that converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The NO-activated MdERF5 was observed to increase in abundance in the nucleus and bind to the promoter of the ACC synthase gene MdACS1 and directly suppress its transcription. Together, these results suggest that NO-activated nucleocytoplasmic MdERF5 suppresses the action of ethylene biosynthetic genes, thereby suppressing ethylene biosynthesis and limiting fruit ripening.


Asunto(s)
Malus , Transporte Activo de Núcleo Celular , Etilenos/metabolismo , Factor V/genética , Factor V/metabolismo , Factor V/farmacología , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant Physiol ; 185(4): 1875-1893, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33743010

RESUMEN

The plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production and delayed fruit ripening, whereas treatment with a BR biosynthesis inhibitor promoted ethylene production and accelerated fruit ripening in pear, suggesting BR is a ripening suppressor. The expression of the transcription factor BRASSINAZOLE-RESISTANT 1PuBZR1 was enhanced by BR treatment during pear fruit ripening. PuBZR1 interacted with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppressed its activity. BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and expression profiles of corresponding apple (Malus domestica) homologs showed similar changes following epibrassinolide treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1, thereby reducing ethylene production and suppressing fruit ripening. This likely represents a conserved mechanism by which BR suppresses ethylene biosynthesis during climacteric fruit ripening.


Asunto(s)
Brasinoesteroides/metabolismo , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Pyrus/crecimiento & desarrollo , Pyrus/metabolismo , Factores de Transcripción/metabolismo , China , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo
10.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012719

RESUMEN

Auxin plays an important role in regulating plant development, and Auxin/indole acetic acid (Aux/IAA) is a type of auxin-responsive gene and plays an important role in auxin signaling; to date, although 29 Aux/IAA proteins have been reported in Abrabidopsis thaliana, only parts of the Aux/IAA family gene functions have been identified. We previously reported that a bud sport of 'Longfeng' (LF) apple (Malus domestica), named 'Grand longfeng' (GLF), which showed a larger fruit size than LF, has lower expression of MdAux/IAA2. In this study, we identified the function of the MdAux/IAA2 gene in apple fruit size difference using Agrobacterium-mediated genetic transformation. Overexpression of MdAux/IAA2 decreased the apple flesh callus increment and caused a smaller globular cell size. In addition, overexpression of MdAux/IAA2 in GLF fruit resulted in the reduction of apple fruit size, weight, and cell size, while silencing MdAux/IAA2 in LF apple fruit resulted in an increase in apple fruit weight and cell size. We suggest that the high auxin content depressed the expression of MdAux/IAA2, and that the downregulated expression of MdAux/IAA2 led to the formation of GLF. Our study suggests a mechanism for fruit size regulation in plants and we will explore the transcription factors functioning in this process in the future.


Asunto(s)
Malus , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Physiol ; 182(4): 2035-2046, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047049

RESUMEN

Sugar content is an important trait of fleshy fruit, and elevating Suc levels is a major goal in horticultural crop breeding. Here, we examined the sugar content in two varieties of the Ussurian pear (Pyrus ussuriensis), 'Nanguo' (NG) and its bud sport (BNG), and we found that Suc content was higher in BNG fruit than in NG fruit. We compared the transcriptomes of the two varieties using RNA sequencing and identified a SWEET (Sugars Will Eventually be Exported Transporter) gene, PuSWEET15, expressed at higher levels in BNG fruit. Heterologous expression of PuSWEET15 in a SUSY7/ura yeast (Saccharomyces cerevisiae) strain showed that PuSWEET15 is an active Suc transporter. Overexpression of PuSWEET15 in NG pear fruit increased Suc content, while silencing of PuSWEET15 in BNG fruit decreased Suc content. The WRKY transcription factor PuWRKY31 was also expressed more highly in BNG fruit than in NG fruit, and we found that PuWRKY31 bound to the PuSWEET15 promoter and induced its transcription. The histone acetylation level of the PuWRKY31 promoter was higher in BNG fruit, suggesting a mechanism by which Suc levels can be elevated.


Asunto(s)
Frutas/metabolismo , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Pyrus/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Histonas/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Pyrus/genética , Sacarosa/metabolismo , Factores de Transcripción/genética
12.
New Phytol ; 226(6): 1781-1795, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083754

RESUMEN

The gaseous plant hormone ethylene induces the ripening of climacteric fruit, including apple (Malus domestica). Another phytohormone, auxin, is known to promote ethylene production in many horticultural crops, but the regulatory mechanism remains unclear. Here, we found that auxin application induces ethylene production in apple fruit before the stage of commercial harvest, when they are not otherwise capable of ripening naturally. The expression of MdARF5, a member of the auxin response factor transcription factor (TF) family involved in the auxin signaling pathway, was enhanced by treatment with the synthetic auxin naphthaleneacetic acid (NAA). Further studies revealed that MdARF5 binds to the promoter of MdERF2, encoding a TF in the ethylene signaling pathway, as well as the promoters of two 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes (MdACS3a and MdACS1) and an ACC oxidase (ACO) gene, MdACO1, all of which encode key steps in ethylene biosynthesis, thereby inducing their expression. We also observed that auxin-induced ethylene production was dependent on the methylation of the MdACS3a promoter. Our findings reveal that auxin induces ethylene biosynthesis in apple fruit through activation of MdARF5 expression.


Asunto(s)
Malus , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Cell ; 29(6): 1316-1334, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28550149

RESUMEN

The plant hormone ethylene is critical for ripening in climacteric fruits, including apple (Malus domestica). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1, an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2, encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3, encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1 This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1 Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2.


Asunto(s)
Etilenos/biosíntesis , Frutas/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ciclopentanos/farmacología , Etilenos/metabolismo , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Malus/efectos de los fármacos , Oxilipinas/farmacología , Proteínas de Plantas/genética , Factores de Transcripción/genética
14.
Plant J ; 88(5): 735-748, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27476697

RESUMEN

Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening.


Asunto(s)
Frutas/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Malus/genética , Proteínas de Plantas/genética
15.
New Phytol ; 210(2): 511-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26661583

RESUMEN

Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety 'Du Li' (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.


Asunto(s)
Proteínas de Plantas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Transporte de ARN/genética , Secuencia de Bases , Clonación Molecular , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Floema/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/genética
16.
Plant J ; 78(6): 990-1002, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24684704

RESUMEN

Self-incompatibility (SI) is a reproductive isolation mechanism in flowering plants. Plants in the Solanaceae, Rosaceae and Plantaginaceae belong to the gametophytic self-incompatibility type. S-RNase, which is encoded by a female-specific gene located at the S locus, degrades RNA in the pollen tube and causes SI. Recent studies have provided evidence that S-RNase is transported non-selectively into the pollen tube, but have not specified how this transportation is accomplished. We show here that the apple (Malus domestica) MdABCF protein, which belongs to group F of the ABC transporter family, assists in transportation of S-RNase into the pollen tube. MdABCF is located in the pollen tube membrane and interacts with S-RNase. S-RNase was unable to enter the pollen tube when MdABCF was silenced by antisense oligonucleotide transfection. Our results show that MdABCF assists in transportation of either self or non-self S-RNase into the pollen tube. Moreover, MdABCF coordinates with the cytoskeleton to transport S-RNase. Blockage of S-RNase transport disrupts self-incompatibility in this system.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Malus/metabolismo , Proteínas de Plantas/fisiología , Tubo Polínico/metabolismo , Ribonucleasas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Aislamiento Reproductivo
17.
Plant Cell Physiol ; 56(10): 1909-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26209510

RESUMEN

Ethylene biosynthesis in plants involves different 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes. The regulation of each ACS gene during fruit development is unclear. Here, we characterized another apple (Malus×domestica) ACS gene, MdACS6. The transcript of MdACS6 was observed not only in fruits but also in other tissues. During fruit development, MdACS6 was initiated at a much earlier stage, whereas MdACS3a and MdACS1 began to be expressed at 35 d before harvest and immediateley after harvest, respectively. Moreover, the enzyme activity of MdACS6 was significantly lower than that of MdACS3a and MdACS1, accounting for the low ethylene biosynthesis in young fruits. Overexpression of MdACS6 (MdACS6-OE) by transient assay in apple showed enhanced ethylene production, and MdACS3a was induced in MdACS6-OE fruits but not in control fruits. In MdACS6 apple fruits silenced by the virus-induced gene silencing (VIGS) system (MdACS6-AN), neither ethylene production nor MdACS3a transcript was detectable. In order to explore the mechanism through which MdACS3a was induced in MdACS6-OE fruits, we investigated the expression of apple ethylene-responsive factor (ERF) genes. The results showed that the expression of MdERF2 was induced in MdACS6-OE fruits and inhibited in MdACS6-AN fruits. Yeast one-hybrid assay showed that MdERF2 protein could bind to the promoter of MdACS3a. Moreover, down-regulation of MdERF2 in apple flesh callus led to a decrease of MdACS3a expression, demonstrating the regulation of MdERF2 on MdACS3a. The mechanism through which MdACS6 regulates the action of MdACS3a was discussed.


Asunto(s)
Etilenos/metabolismo , Frutas/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Plant Cell Physiol ; 55(5): 977-89, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24503865

RESUMEN

S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Aparato de Golgi/metabolismo , Malus/metabolismo , Microtúbulos/metabolismo , Tubo Polínico/metabolismo , Ribonucleasas/metabolismo , Western Blotting , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Citoplasma/metabolismo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Dinitrobencenos/farmacología , Endocitosis/efectos de los fármacos , Malus/citología , Microscopía Confocal , Microtúbulos/efectos de los fármacos , Paclitaxel/farmacología , Polen/citología , Polen/metabolismo , Tubo Polínico/citología , Tubo Polínico/crecimiento & desarrollo , Autoincompatibilidad en las Plantas con Flores , Sulfanilamidas/farmacología , Tiazolidinas/farmacología
19.
Plant Physiol ; 162(2): 885-96, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23629835

RESUMEN

Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions -604 to -911 bp and -1,218 to -1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed.


Asunto(s)
Antocianinas/metabolismo , Glucosiltransferasas/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Pyrus/genética , Agrobacterium tumefaciens/genética , Clonación Molecular , Metilación de ADN , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Glucosiltransferasas/metabolismo , Datos de Secuencia Molecular , Pigmentación/genética , Proteínas de Plantas/metabolismo , Pyrus/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
J Exp Bot ; 65(12): 3121-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24759884

RESUMEN

As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase.


Asunto(s)
Malus/genética , Proteínas de Plantas/genética , Ribonucleasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Malus/enzimología , Malus/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA