Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598877

RESUMEN

Light scattering is a universal matter property that is especially prominent in nanoscale or larger materials. However, the effects of scattering-based cascading optical processes on experimental quantification of sample absorption, scattering, and emission intensities, as well as scattering and emission depolarization, have not been adequately addressed. Using a series of polystyrene nanoparticles (PSNPs) of different sizes as model analytes, we present a computational and experimental study on the effects of cascading light scattering on experimental quantification of NP scattering activities (scattering cross-section or molar coefficient), intensity, and depolarization. Part II and Part III of this series of companion articles explore the effects of cascading optical processes on sample absorption and fluorescence measurements, respectively. A general theoretical model is developed on how forward scattered light complicates the general applicability of Beer's law to the experimental UV-vis spectrum of scattering samples. The correlation between the scattering intensity and PSNP concentration is highly complicated with no robust linearity even when the scatterers' concentration is very low. Such complexity arises from the combination of concentration-dependence of light scattering depolarization and the scattering inner filter effects (IFEs). Scattering depolarization increases with the PSNP scattering extinction (thereby, its concentration) but can never reach unity (isotropic) due to the polarization dependence of the scattering IFE. The insights from this study are important for understanding the strengths and limitations of various scattering-based techniques for material characterization including nanoparticle quantification. They are also foundational for quantitative mechanistic understanding on the effects of light scattering on sample absorption and fluorescence measurements.

2.
Anal Chem ; 95(9): 4461-4469, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36787490

RESUMEN

In Part I of the three companion articles, we reported the effects of light scattering on experimental quantification of scattering extinction, intensity, and depolarization in solutions that contain only scatterers with no significant absorption and photoluminescence activities. The present work (Part II) studies the effects of light scattering and absorption on a series of optical spectroscopic measurements done on samples that contain both absorbers and scatterers, but not emitters. The experimental UV-vis spectrum is the sum of the sample absorption and scattering extinction spectra. However, the upper limit of the experimental Beer's-law-abiding extinction can be limited prematurely by the interference of forward scattered light. Light absorption reduces not only the sample scattering intensity but also the scattering depolarization. The impact of scattering on sample light absorption is complicated, depending on whether the absorption of scattered light is taken into consideration. Scattering reduces light absorption along the optical path length from the excitation source to the UV-vis detector. However, the absorption of the scattered light can be adequate to compensate the reduced light absorption along such optical path, making the impacts of light scattering on the sample total light absorption negligibly small (<10%). The latter finding constitutes a critical validation of the integrating-sphere-assisted resonance synchronous spectroscopic method for experimental quantification of absorption and scattering contribution to the sample UV-vis extinction spectra. The techniques and general guidelines provided in this work should help improve the reliability of optical spectroscopic characterization of nanoscale or larger materials, many of which are simultaneous absorbers and scatterers. The insights from this work are foundational for Part III of this series of work, which is on the cascading optical processes on spectroscopic measurements of fluorescent samples.

3.
Chem Commun (Camb) ; 59(52): 8059-8062, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37278053

RESUMEN

This work examines the roles played by wall thickness in determining the plasmonic properties of gold-silver (Ag-Au) nanocages. Ag-Au cages with different wall thicknesses, but the same void or outer size, shape, and elemental composition, were designed as a model platform. The experimental findings were understood with theoretical calculations. This study not only investigates the effect of wall thickness but also provides an effective knob to tailor the plasmonic properties of hollow nanostructures.

4.
Appl Spectrosc ; 74(11): 1341-1349, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32406267

RESUMEN

Cinnamon essential oil is used in food flavoring, food preservation, and for complementary medicine. The most common types of cinnamon used in essential oils are true cinnamon (Cinnamomum verum) and cassia cinnamon (Cinnamomum cassia). True cinnamon is commonly adulterated with cassia cinnamon because it is cheaper. However, cassia cinnamon contains higher concentrations of coumarin which has been shown to have adverse health effects. There is a need to develop simple, nondestructive, rapid screening methods for quality control and food authentication and to identify adulteration of cinnamon essential oil. Currently, the most common methods to screen for coumarin in cinnamon include high-performance liquid chromatography (HPLC) and gas chromatography (GC). However, these methods require time-consuming sample preparation and detection. Vibrational spectroscopy methods are emerging as a promising alternative for rapid, nondestructive screening for food safety applications. In this study, a rapid screening method has been developed to examine cinnamon essential oils using surface-enhanced Raman spectroscopy (SERS). The experimental spectra were compared to theoretical calculations using the DFT method BP86/6-311++G(d,p) basis set. The limit of detection of coumarin was determined to be 1 × 10-6 M or 1.46 mg/L using SERS with colloid paste substrates. Furthermore, 1:16 dilutions of cinnamaldehyde and 1:8 dilutions of eugenol were detected using SERS which can help determine if the cinnamon essential oil was made from bark or from leaves. Seven commercially available cinnamon essential oils were also analyzed and compared to reference solutions. SERS was able to discriminate between essential oils primarily composed of cinnamaldehyde and those composed of eugenol. Furthermore, the SERS method detected peaks that are attributed to coumarin in two of the commercially available samples. To date, this is the first time SERS has been used to rapidly screen cinnamon essential oils.


Asunto(s)
Cinnamomum aromaticum/química , Cumarinas/análisis , Inocuidad de los Alimentos/métodos , Aceites Volátiles/química , Espectrometría Raman/métodos , Límite de Detección , Corteza de la Planta/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA