Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(13): e2217208120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940337

RESUMEN

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g-1 at 0.1 A g-1, especially excellent rate capability (101.0 mA h g-1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.

2.
Small ; : e2400099, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507728

RESUMEN

Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.

3.
Small ; : e2400673, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700057

RESUMEN

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

4.
Nano Lett ; 23(4): 1401-1408, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36715492

RESUMEN

Engineered MXene surfaces with more -O functional groups are feasible for realizing higher energy density due to their higher theoretical capacitance. However, there have been only a few explorations of this regulation mechanism. Investigating the formation source and mechanism is conducive to expanding the adjustment method from the top-down perspective. Herein, for the first time, the formation dynamics of -O functional groups on Mo2CTx are discovered as a two-step dehydrogenation of adsorbed water through in situ near-ambient-pressure X-ray photoelectron spectroscopy, further confirmed by ab initio molecular dynamics simulations. From this, the controllable substitution of -F functional groups with -O functional groups is achieved on Mo2CTx during electrochemical cycling in an aqueous electrolyte. The obtained Mo2CTx with rich -O groups exhibits a high capacitance of 163.2 F g -1 at 50 mV s -1, together with excellent stability. These results offer new insights toward engineering surface functional groups of MXenes for many specific applications.

5.
J Am Chem Soc ; 145(19): 10681-10690, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37129450

RESUMEN

Lewis acidic molten salt method is a promising synthesis strategy for achieving MXenes with controllable surface termination from numerous MAX materials. Understanding the phase evolution chemistry during etching and post-processing is highly desirable but remains a key challenge due to the lack of suitable in-situ characterizations and the complexity of the reaction process. Herein, we introduce an operando synchrotron radiation X-ray diffraction (SRXRD) technique to unveil the phase evolution process of Nb2GaC MAX under a molten-salt ambient, proposing a controllable synthesis to achieve optimal etching through precise temperature and time adjustment. Subsequently, the phase structure of Nb2CTx MXenes is successfully tailored from hexagonal to amorphous by time-dependent persulfate oxidation. The resulting amorphous Nb2CTx with a well-patterned morphology and numerous chloride terminations exhibits highly improved specific capacity, rate capability, and long cycling for Li+ storage with a Cl-containing surface protective film. Addressing the time-related phase evolution during the entire molten salt strategy provides new insights into achieving higher efficiency and controllability in preparing MXenes and shows great potential in high-performance energy storage systems based on MXenes.

6.
J Am Chem Soc ; 145(50): 27531-27538, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38054906

RESUMEN

Single-atom catalysts exhibit promising electrocatalytic activity, a trait that can be further enhanced through the introduction of heteroatom doping within the carbon skeleton. Nonetheless, the intricate relationship between the doping positions and activity remains incompletely elucidated. This contribution sheds light on an inductive effect of single-atom sites, showcasing that the activity of the oxygen reduction reaction (ORR) can be augmented by reducing the spatial gap between the doped heteroatom and the single-atom sites. Drawing inspiration from this inductive effect, we propose a synthesis strategy involving ligand modification aimed at precisely adjusting the distance between dopants and single-atom sites. This precise synthesis leads to optimized electrocatalytic activity for the ORR. The resultant electrocatalyst, characterized by Fe-N3P1 single-atom sites, demonstrates remarkable ORR activity, thus exhibiting great potential in zinc-air batteries and fuel cells.

7.
Small ; 19(22): e2300107, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36840667

RESUMEN

Carbon materials are widely accepted as promising candidates for sodium-ion batteries (SIBs) anodes due to their chemical stability and conductivity, while the capacity is still unsatisfactory. Here, this work reports the superhigh capacity Na storage through initiating fluorine chemistry (CF bonds) in carbon synthesized by the dehydrogenation and fluorination of polycyclic aromatic hydrocarbon such as pitch. Experimental and theoretical investigations uncover that CF bonds exist at the form of dangling bonds (CFx ), which generates the coexistence of graphitic and defective nanodomains. It delivers a superhigh capacity of 450 mAh g-1 , far surpassing most of current SIBs carbon anodes. Theoretical calculation attributes this performance to a new Na storage mechanism that Na can be accommodated in the form of cluster rather than a single ion at each host site with F-doping. This work highlights the significance of carbon material chemistry in establishing the novel ion storage manner in SIBs and other batteries.

8.
Angew Chem Int Ed Engl ; 62(48): e202313028, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37851474

RESUMEN

Coordination engineering for single-atom sites has drawn increasing attention, yet its chemical synthesis remains a tough issue, especially for tailorable coordination structures. Herein, a molecular recognition strategy is proposed to fabricate single-atom sites with regulable local coordination structures. Specifically, a heteroatom-containing ligand serves as the guest molecule to induce coordination interaction with the metal-containing host, precisely settling the heteroatoms into the local structure of single-atom sites. As a proof of concept, thiophene is selected as the guest molecule, and sulfur atoms are successfully introduced into the local coordination structure of iron single-atom sites. Ultrahigh oxygen reduction electrocatalytic activity is achieved with a half-wave potential of 0.93 V versus reversible hydrogen electrode. Furthermore, the strategy possesses excellent universality towards diversified types of single-atom sites. This work makes breakthroughs in the fabrication of single-atom sites and affords new opportunities in structural regulation at the atomic level.

9.
Angew Chem Int Ed Engl ; 59(49): 22002-22006, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841453

RESUMEN

The electrochemical performance of vanadium-oxide-based cathodes in aqueous zinc-ion batteries (ZIBs) depends on their degree of crystallinity and composite state with carbon materials. An in situ electrochemical induction strategy was developed to fabricate a metal-organic-framework-derived composite of amorphous V2 O5 and carbon materials (a-V2 O5 @C) for the first time, where V2 O5 is in an amorphous state and uniformly distributed in the carbon framework. The amorphous structure endows V2 O5 with more isotropic Zn2+ diffusion routes and active sites, resulting in fast Zn2+ transport and high specific capacity. The porous carbon framework provides a continuous electron transport pathway and ion diffusion channels. As a result, the a-V2 O5 @C composites display extraordinary electrochemical performance. This work will pave the way toward design of ZIB cathodes with superior rate performance.

10.
Angew Chem Int Ed Engl ; 58(21): 7062-7067, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30893503

RESUMEN

Rechargeable aqueous zinc-ion batteries (ZIBs) are promising energy-storage devices owing to their low cost and high safety. However, their energy-storage mechanisms are complex and not well established. Recent energy-storage mechanisms of ZIBs usually depend on cationic redox processes. Anionic redox processes have not been observed owing to the limitations of cathodes and electrolytes. Herein, we describe highly reversible aqueous ZIBs based on layered VOPO4 cathodes and a water-in-salt electrolyte. Such batteries display reversible oxygen redox chemistry in a high-voltage region. The oxygen redox process not only provides about 27 % additional capacity, but also increases the average operating voltage to around 1.56 V, thus increasing the energy density by approximately 36 %. Furthermore, the oxygen redox process promotes the reversible crystal-structure evolution of VOPO4 during charge/discharge processes, thus resulting in enhanced rate capability and cycling performance.

11.
Small ; 14(6)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29239096

RESUMEN

Admittedly, the surface atomic structure of heterogenous catalysts toward the electrochemical oxygen reduction reaction (ORR) are accepted as the important features that can tune catalytic activity and even catalytic pathway. Herein, a surface engineering strategy to controllably synthesize a carbon-layer-wrapped cobalt-catalyst from 2D cobalt-based metal-organic frameworks is elaborately demonstrated. Combined with synchrotron radiation X-ray photoelectron spectroscopy, the soft X-ray absorption near-edge structure results confirmed that rich covalent interfacial CoNC bonds are efficiently formed between cobalt nanoparticles and wrapped carbon-layers during the polydopamine-assisted pyrolysis process. The X-ray absorption fine structure and corresponding extended X-ray absorption fine structure spectra further reveal that the wrapped cobalt with Co-N coordinations shows distinct surface distortion and atomic environmental change of Co-based active sites. In contrast to the control sample without coating layers, the 800 °C-annealed cobalt catalyst with N-doped carbon layers enwrapping achieves significantly enhanced ORR activity with onset and half-wave potentials of 0.923 and 0.816 V (vs reversible hydrogen electrode), highlighting the important correlation between surface atomic structure and catalytic property.

12.
Small ; 14(19): e1800128, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29635871

RESUMEN

Developing efficient and low-cost defective carbon-based catalysts for the oxygen reduction reaction (ORR) is essential to metal-air batteries and fuel cells. Active sites engineering toward these catalysts is highly desirable but challenging to realize boosted catalytic performance. Herein, a sandwich-like confinement route to achieve the controllable regulation of active sites for carbon-based catalysts is reported. In particular, three distinct catalysts including metal-free N-doped carbon (NC), single Co atoms dispersed NC (Co-N-C), and Co nanoparticles-contained Co-N-C (Co/Co-N-C) are controllably realized and clearly identified by synchrotron radiation-based X-ray spectroscopy. Electrochemical measurements suggest that the Co/Co-N-C catalyst delivers optimized ORR performance due to the rich Co-Nx active sites and their synergistic effect with metallic Co nanoparticles. This work provides deep insight for rationally designing efficient ORR catalyst based on active sites engineering.

13.
Small ; 12(41): 5684-5691, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27578055

RESUMEN

Ultrafast and high capacity all-carbon supercapacitors with 3D porous aerogel electrode are realized by combining carbon nanostructures of various dimensionalities, including 0D carbon onions, 1D carbon nanotubes, and 2D graphene oxide. The synergistic effects from the different forms of nanocarbons render this hybrid outstanding capacitance with excellent stability, even at ultrafast charge-discharge rates.

14.
Phys Chem Chem Phys ; 19(1): 557-561, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27910968

RESUMEN

Layered Cu2MoS4, consisting of earth-abundant elements, is regarded as a potential catalyst for the hydrogen evolution reaction (HER). Herein, we demonstrate a Cu2O-based template strategy to synthesise hierarchical hollow nanostructures of Cu2MoS4. The characterizations reveal that the electrochemically active surface of the hollow Cu2MoS4 is largely enhanced, in contrast to the nanosheet or nanoparticle structures. As the direct outcome, the designed hierarchical hollow structures display excellent HER activities with a low overvoltage and small Tafel slope. This study may provide new inspiration for the research of other ternary sulphide materials as well as subsequently accelerating their applications in the field of catalysis.

15.
ACS Catal ; 14(8): 5978-5986, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38660614

RESUMEN

Reaction products in heterogeneous catalysis can be detected either on the catalyst surface or in the gas phase after desorption. However, if atoms are dissolved in the catalyst bulk, then reaction channels can become hidden. This is the case if the dissolution rate of the deposits is faster than their formation rate. This might lead to the underestimation or even overlooking of reaction channels such as, e.g., carbon deposition during hydrocarbon oxidation reactions, which is problematic as carbon can have a significant influence on the catalytic activity. Here, we demonstrate how such hidden deposition channels can be uncovered by carefully measuring the product formation rates in the local gas phase just above the catalyst surface with time-resolved ambient pressure X-ray photoelectron spectroscopy. As a case study, we investigate methane oxidation on a polycrystalline Pd catalyst in an oxygen-lean environment at a few millibar pressure. By ramping the temperature between 350 and 525 °C, we follow the time evolution of the different reaction pathways. Only in the oxygen mass-transfer limit do we observe CO production, while our data suggests that carbon deposition also happens outside this limit.

16.
Dalton Trans ; 52(11): 3270-3274, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877205

RESUMEN

Herein, ultrasmall nanostructured Co3O4 particles have been prepared by a facile two-step synthetic method and furthermore applied to lithium-ion batteries. Benefitting from an increased specific surface area and improved tolerance for volume expansion, they deliver an extremely high specific capacity of 1432.7 mA h g-1 at 0.1 A g-1 and an outstandingly long cycle life with about 511.2 mA h g-1 at 10 A g-1 after 2000 cycles. This work will pave a new way to engineer advanced electrode materials for long-lived high-rate lithium-ion batteries.

17.
Small Methods ; : e2301115, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145365

RESUMEN

Aqueous zinc ion batteries (AZIBs) show great potential in large-scale energy storage systems. However, the inferior cycling life due to water-induced parasitic reactions and uncontrollable dendrites growth impede their application. Electrolyte optimization via the use of additives is a promising strategy to enhance the stability of AZIBs. Nevertheless, the mechanism of optimal multifunctional additive strategy requires further exploration. Herein, sodium dodecyl benzene sulfonate (SDBS) is proposed as a dual-functional additive in ZnSO4 electrolyte. Benefiting from the additive, both side reactions and zinc dendrites growth are significantly inhibited. Further, a synchrotron radiational spectroscopic study is employed to investigate SDB- adjusted electric double layer (EDL) near the Zn surface and the optimized solvation sheath of Zn2+ . First-principles calculations verify the firm adsorption of SDB- , and restriction of random diffusion of Zn2+ on the Zn surface. In particular, the SDBS additive endows Zn||Zn symmetric cells with a 1035 h ultra-stable plating/stripping at 0.2 mA cm-2 . This work not only provides a promising design strategy by dual-functional electrolyte additives for high stable AZIBs, but also exhibits the prospect of synchrotron radiation spectroscopy analysis on surface EDL and Zn2+ solvation shell optimization.

18.
Dalton Trans ; 51(17): 6855-6859, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438711

RESUMEN

Herein, a bimetallic sulfide Fe0.4Co0.6S2@NC nanobox was prepared via a simple two-step synthetic route. The N-doped carbon coated hollow nanobox was derived from a Prussian blue analogue (PBA) and applied for an SIB anode. As expected, it exhibits a high capacity (486.6 mA h g-1 at 0.1 A g-1) and displays an excellent cycling stability (230 mA h g-1 at 10 A g-1 after 900 cycles).

19.
Adv Mater ; 34(5): e2108809, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34784438

RESUMEN

Endogenous heterojunction of 2D MXenes with unique structure shows inspiring potential in energy applications, which is impeded by complex synthesis method and finite MAX materials. Herein, an in situ hydrothermal strategy is implemented to successfully synthesize unique endogenous hetero-MXenes of amorphous MoS2 coupling with fluoride-free Mo2 CTx (hetero-Mo2 C) directly from Mo2 Ga2 C MAX. The distinctive morphology and heterojunction structure caused by the introduction of MoS2 endow the hetero-MXenes with extraordinary structural stability and optimized Li+ storage mechanism with improved charge transport and lithium ion adsorption capabilities. As a result, hetero-Mo2 C exhibits excellent electrochemical performance with a high discharge specific capacity of 1242 mAh g-1 at 0.1 A g-1 and long cycle stability of 683.9 mAh g-1 after 1200 cycling. This work provides new insights into rational design of novel MXenes heterojunctions, practically important for the development of MXenes and their applications in high-performance energy storage systems.

20.
Adv Mater ; 34(37): e2204959, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863016

RESUMEN

A universal atomic layer confined doping strategy is developed to prepare Bi24 O31 Br10 materials incorporating isolated Cu atoms. The local polarization can be created along the CuOBi atomic interface, which enables better electron delocalization for effective N2 activation. The optimized Cu-Bi24 O31 Br10 atomic layers show 5.3× and 88.2× improved photocatalytic nitrogen fixation activity than Bi24 O31 Br10 atomic layer and bulk Bi24 O31 Br10 , respectively, with the NH3 generation rate reaching 291.1 µmol g-1 h-1 in pure water. The polarized Cu-Bi site pairs can increase the non-covalent interaction between the catalyst's surface and N2 molecules, then further weaken the covalent bond order in NN. As a result, the hydrogenation pathways can be altered from the associative distal pathway for Bi24 O31 Br10 to the alternating pathway for Cu-Bi24 O31 Br10 . This strategy provides an accessible pathway for designing polarized metal site pairs or tuning the non-covalent interaction and covalent bond order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA