Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2310131120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048460

RESUMEN

Optical three-dimensional (3D) molecular imaging is highly desirable for providing precise distribution of the target-of-interest in disease models. However, such 3D imaging is still far from wide applications in biomedical research; 3D brain optical molecular imaging, in particular, has rarely been reported. In this report, we designed chemiluminescence probes with high quantum yields, relatively long emission wavelengths, and high signal-to-noise ratios to fulfill the requirements for 3D brain imaging in vivo. With assistance from density-function theory (DFT) computation, we designed ADLumin-Xs by locking up the rotation of the double bond via fusing the furan ring to the phenyl ring. Our results showed that ADLumin-5 had a high quantum yield of chemiluminescence and could bind to amyloid beta (Aß). Remarkably, ADLumin-5's radiance intensity in brain areas could reach 4 × 107 photon/s/cm2/sr, which is probably 100-fold higher than most chemiluminescence probes for in vivo imaging. Because of its strong emission, we demonstrated that ADLumin-5 could be used for in vivo 3D brain imaging in transgenic mouse models of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Luminiscencia , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ratones Transgénicos , Neuroimagen/métodos , Placa Amiloide/metabolismo , Modelos Animales de Enfermedad
2.
Bioorg Chem ; 146: 107279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513325

RESUMEN

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radiofármacos/química , Radioquímica , Piridinas/metabolismo
3.
J Biol Chem ; 298(4): 101794, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248531

RESUMEN

Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aß), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aß levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aß. Consistent with Aß increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aß levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Ciclo Celular , Epigénesis Genética , Factores de Transcripción , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
BMC Med ; 21(1): 402, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880708

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone. METHODS: We used PCa cell lines to evaluate the combined effects of CN133 and anti-PD-1 in the subcutaneous and osseous PCa mice models, as well as the underlying mechanisms. RESULTS: We found that CN133 could reduce the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and CN133 combination with anti-PD-1 could augment antitumor effects in the subcutaneous PCa of allograft models. However, anti-PD-1 combination with CN133 failed to elicit an anti-tumor response to the bone metastatic PCa mice. Mechanistically, CN133 could inhibit the infiltration of PMN-MDSCs in the TME of soft tissues by downregulation gene expression of PMN-MDSC recruitment but not change the gene expression involved in PMN-MDSC activation in the CN133 and anti-PD-1 co-treatment group relative to the anti-PD-1 alone in the bone metastatic mice model. CONCLUSIONS: Taken together, our work firstly demonstrated that combination of CN133 with anti-PD-1 therapy may increase the therapeutic efficacy to PCa by reactivation of the positive immune microenvironment in the TME of soft tissue PCa.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Inmunoterapia , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética
5.
Virol J ; 20(1): 223, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789347

RESUMEN

BACKGROUND: Citrus tristeza virus (CTV) is one of the most serious threats to the citrus industry, and is present in both wild and cultivated citrus. The origin and dispersal patterns of CTV is still poorly understood in China. METHODS: In this study, 524 CTV suspected citrus samples from China were collected, including 354 cultivated citrus samples and 174 wild citrus samples. Finally, 126 CTV coat protein sequences were obtained with time-stamped from 10 citrus origins in China. Bayesian phylodynamic inference were performed for CTV origin and dispersal patterns study in China. RESULT: We found that CTV was mainly distributed in southern and coastal areas of China. The substitution rate of CTV was 4.70 × 10- 4 subs/site/year (95% credibility interval: 1.10 × 10- 4 subs/site/year ~ 9.10 × 10- 4 subs/site/year), with a slight increasing trend in CTV populations between 1990 and 2006. The CTV isolates in China shared a most common recent ancestor around 1875 (95% credibility interval: 1676.57 ~ 1961.02). The CTV in China was originated from wild citrus in Hunan and Jiangxi, and then spread from the wild citrus to cultivated citrus in the growing regions of Sichuan, Chongqing, Hubei, Fujian, Zhejiang, Guangxi and Guangdong provinces. CONCLUSIONS: This study has proved that CTV in China was originated from wild citrus in Hunan and Jiangxi. The spatial-temporal distribution and dispersal patterns has uncovered the population and pandemic history of CTV, providing hints toward a better understanding of the spread and origin of CTV in China.


Asunto(s)
Citrus , Closterovirus , Teorema de Bayes , China , Enfermedades de las Plantas , Closterovirus/genética
6.
Mol Pharm ; 20(4): 1990-1995, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36827644

RESUMEN

Accrued evidence has indicated that epigenetic mechanisms altered by alcohol have been implicated in the progression and development of alcoholic liver disease (ALD). SIRT1 plays an important role in ALD progression and has emerged as a promising therapeutic target for treating ALD. The purpose of this study is to investigate the efficacy of [11C]WL-1 for quantitative imaging of SIRT1 in mouse models of early-stage ALD. Positron emission tomography/computerized tomography (PET/CT) imaging was carried out 60 min following the injection of [11C]WL-1 in mouse models of early-stage ALD and normal control mice. The time-activity curves for ALD mouse livers showed remarkably decreased total uptake of [11C]WL-1 relative to that for control mouse livers. Moreover, compared with the normal control mice, decreased uptake in the cortex, hippocampus, and cerebellum was also observed in early-stage ALD mice, while the uptake of [11C]WL-1 in amygdala showed no significant changes. Western blot analysis confirmed that the protein levels of SIRT1 in the brains of early-stage ALD mice were decreased significantly when compared to the normal control mouse brains. Collectively, PET imaging with [11C]WL-1 would facilitate future clinical studies, aiming to demonstrate the roles of SIRT1 in ALD.


Asunto(s)
Hepatopatías Alcohólicas , Sirtuina 1 , Animales , Ratones , Sirtuina 1/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Hepatopatías Alcohólicas/diagnóstico por imagen , Hepatopatías Alcohólicas/metabolismo , Etanol/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo
7.
Alzheimers Dement ; 19(9): 4110-4126, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37249148

RESUMEN

INTRODUCTION: Blood phosphorylated tau at threonine 217 (tau-PT217) is a newly established biomarker for Alzheimer's disease and postoperative delirium in patients. However, the mechanisms and consequences of acute changes in blood tau-PT217 remain largely unknown. METHODS: We investigated the effects of anesthesia/surgery on blood tau-PT217 in aged mice, and evaluated the associated changes in B cell populations, neuronal excitability in anterior cingulate cortex, and delirium-like behavior using positron emission tomography imaging, nanoneedle technology, flow cytometry, electrophysiology, and behavioral tests. RESULTS: Anesthesia/surgery induced acute increases in blood tau-PT217 via enhanced generation in the lungs and release from B cells. Tau-PT217 might cross the blood-brain barrier, increasing neuronal excitability and inducing delirium-like behavior. B cell transfer and WS635, a mitochondrial function enhancer, mitigated the anesthesia/surgery-induced changes. DISCUSSION: Acute increases in blood tau-PT217 may contribute to brain dysfunction and postoperative delirium. Targeting B cells or mitochondrial function may have therapeutic potential for preventing or treating these conditions.


Asunto(s)
Enfermedad de Alzheimer , Anestesia , Delirio del Despertar , Ratones , Animales , Proteínas tau/metabolismo , Fosforilación
8.
Biochemistry ; 61(18): 1945-1954, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36073962

RESUMEN

Bavarostat (EKZ-001) is a selective inhibitor of histone deacetylase 6 (HDAC6) that contains a meta-fluorophenylhydroxamate Zn2+-binding group. The recently determined crystal structure of its complex with HDAC6 from Danio rerio (zebrafish) revealed that the meta-fluoro substituent binds exclusively in an aromatic crevice defined by F583 and F643 rather than being oriented out toward solvent. To explore the binding of inhibitor C-F groups in this fluorophilic crevice, we now report a series of 10 simple fluorophenylhydroxamates bearing one or more fluorine atoms with different substitution patterns. Inhibitory potencies against human and zebrafish HDAC6 range widely from 121 to >30,000 nM. The best inhibitory potency is measured for meta-difluorophenylhydroxamate (5) with IC50 = 121 nM against human HDAC6; the worst inhibitory potencies are measured for ortho-fluorophenylhydroxamate (1) as well as fluorophenylhydroxamates 4, 7, 9, and 10, although there are some variations in activity trends against human and zebrafish HDAC6. These studies show that aromatic ring fluorination at the meta position(s) does not improve inhibitory activity against human HDAC6 relative to the nonfluorinated parent compound phenylhydroxamate (IC50 = 120 nM), but meta-fluorination does not seriously compromise inhibitory activity either. Crystal structures of selected zebrafish HDAC6-fluorophenylhydroxamate complexes reveal that the fluoroaromatic ring is uniformly accommodated in the F583-F643 aromatic crevice, so ring fluorination does not perturb the inhibitor binding conformation. However, hydroxamate-Zn2+ coordination is bidentate for some inhibitors and monodentate for others. These studies will inform design strategies underlying the design of 18F-labeled HDAC6 inhibitors intended for positron emission tomography.


Asunto(s)
Inhibidores de Histona Desacetilasas , Pez Cebra , Animales , Flúor/metabolismo , Halogenación , Histona Desacetilasa 6/química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Solventes/metabolismo , Relación Estructura-Actividad , Pez Cebra/metabolismo
9.
Mol Pharm ; 19(7): 2335-2342, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35604773

RESUMEN

Alcoholic liver disease (ALD) has a significant impact on human health and is one of the leading causes of liver disease mortality. The early and exact diagnosis of ALD is very important since the early stage of disease progression can be reversible. Although ALD can be evaluated by ultrasound, CT, or MRI, there is still no imaging technique sufficient in the diagnosis of early-stage ALD. Of the current studies, epigenetic modulation plays a significant role in the development and progression of ALD. In this work, we evaluate whether BRDs play a vital role in the early-stage ALD using our new PET imaging probe of BET proteins, [11C]CW22. PET/CT imaging of [11C]CW22 and [18F]FDG was used to identify early-stage lesions of livers and brains in the mice model. We found that the average uptake values of livers and brains in early-stage ALD were significantly increased for [11C]CW22 PET/CT imaging but only slightly changed in [18F]FDG PET/CT imaging. Consistently, we also found that BRD 3, 4 protein expression levels were significantly higher in the liver and brain tissues of early-stage ALD. Furthermore, through Pmod software, we found that [11C]CW22 PET/CT uptakes in the brain stem, cerebellum, and midbrain were significantly up-regulated in the early-stage ALD. In conclusion, BRDs were important mediators of damage in early-stage ALD. [11C]CW22 PET/CT imaging can detect the early-phase alcohol-induced damage of livers and brains, which will likely lead to human trials in the future.


Asunto(s)
Fluorodesoxiglucosa F18 , Hepatopatías Alcohólicas , Animales , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Hepatopatías Alcohólicas/diagnóstico por imagen , Hepatopatías Alcohólicas/patología , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos
10.
Bioorg Med Chem Lett ; 64: 128674, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292342

RESUMEN

Heme oxygenase-1 (HO-1) has been involved in the pathogenesis of Alzheimer's disease (AD), thus constituting a promising target for AD drug development. Positron emission tomography (PET) is a fully translational imaging technology, which will help us understand the role of HO-1 in the progression of AD, facilitating to validate promising HO-1 inhibitors in clinical trials. To our knowledge, there is no report on PET imaging probe targeting HO-1 in animals and humans. We report herein the synthesis and characterization of a 11C-labeled imidazole-based alcohol derivative ([11C]QC-33) for imaging of HO-1 in the brain. The desired product [11C]QC-33 was afforded with a radiochemical yield of 16 ± 9% (n = 3, decay corrected). The radiochemical purity was greater than 99%, and the molar radioactivity was greater than 185 GBq/µmol. In vitro autoradiography studies indicated specific binding of [11C]QC-33 in the HO-1 rich regions, showing 75%, 75%, and 69% radioactivity binding reductions in cerebellum, brain stem, and midbrain, respectively. PET/CT scanning in C57BL/6 mice showed low brain uptake and poor blood-brain barrier (BBB) penetration of [11C]QC-33. These results suggested that [11C]QC-33 can serve as a lead compound to advance the development of next generation PET tracer with the potential to monitor HO-1 in AD progression.


Asunto(s)
Hemo-Oxigenasa 1 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Hemo-Oxigenasa 1/metabolismo , Imidazoles/metabolismo , Imidazoles/farmacología , Ratones , Ratones Endogámicos C57BL , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo
11.
Bioorg Chem ; 123: 105779, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35397430

RESUMEN

The orexin receptors (OXRs) have been involved in multiple physiological and neuropsychiatric functions. Identification of PET imaging probes specifically targeting OXRs enables us to better understand the OX system. Seltorexant (JNJ-42847922) is a potent OX2R antagonist with the potential to be an OX2R PET imaging probe. Here, we describe the synthesis and characterization of [18F]Seltorexant as an OX2R PET probe. The ex vivo autoradiography studies indicated the good binding specificity of [18F]Seltorexant. In vivo PET imaging of [18F]Seltorexant in rodents showed suitable BBB penetration with the highest brain uptake of %ID/cc = 3.4 at 2 min post-injection in mice. The regional brain biodistribution analysis and blocking studies showed that [18F]Seltorexant had good binding selectivity and specificity. However, pretreatment with unlabelled Seltorexant and P-gp competitor CsA observed significantly increased brain uptake of [18F]Seltorexant, indicating [18F]Seltorexant could interact P-gp at the blood-brain barrier. Our findings demonstrated that [18F]Seltorexant is a potential brain OX2R PET imaging probe, which paves the way for new OX2R PET probes development and OX system investigation.


Asunto(s)
Neuroimagen , Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ratones , Receptores de Orexina , Tomografía de Emisión de Positrones/métodos
12.
Bioorg Chem ; 127: 106007, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35849893

RESUMEN

Alzheimer's disease (AD) is a chronic, progressive brain neurodegenerative disorder. Up to now, there is no effective drug to halt or reverse the progress of AD. Given the complex pathogenesis of AD, the multi-target-directed ligands (MTDLs) strategy is considered as the promising therapy. Herein, a series of novel donepezil-chalone-rivastigmine hybrids was rationally designed and synthesized by fusing donepezil, chalone and rivastigmine. The in vitro bioactivity results displayed that compound 10c was a reversible huAChE (IC50 = 0.87 µM) and huBuChE (IC50 = 3.3 µM) inhibitor. It also presented significant anti-inflammation effects by suppressing the level of IL-6 and TNF-α production, and significantly inhibited self-mediated Aß1-42 aggregation (60.6%) and huAChE-mediated induced Aß1-40 aggregation (46.2%). In addition, 10c showed significant neuroprotective effect on Aß1-42-induced PC12 cell injury and activated UPS pathway in HT22 cells to degrade tau and amyloid precursor protein (APP). Furthermore, compound 10c presented good stabilty in artificial gastrointestinal fluids and liver microsomes in vitro. The pharmacokinetic study showed that compound 10c was rapidly absorbed in rats and distributed in rat brain after intragastric administration. The PET-CT imaging demonstrated that [11C]10c could quickly enter the brain and washed out gradually in vivo. Further, compound 10c at a dose of 5 mg/kg improved scopolamine-induced memory impairment, deserving further investigations.


Asunto(s)
Enfermedad de Alzheimer , Chalcona , Chalconas , Fármacos Neuroprotectores , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Chalcona/uso terapéutico , Chalconas/farmacología , Chalonas , Inhibidores de la Colinesterasa , Donepezilo/farmacología , Donepezilo/uso terapéutico , Diseño de Fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Rivastigmina/farmacología , Relación Estructura-Actividad
13.
J Enzyme Inhib Med Chem ; 37(1): 1375-1388, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35549612

RESUMEN

Herein, a series of novel O-alkyl ferulamide derivatives were designed and synthesised through the multi-target-directed ligands (MTDLs) strategy. The biological activities in vitro showed that compounds 5a, 5d, 5e, 5f, and 5h indicated significantly selective MAO-B inhibitory potency (IC50 = 0.32, 0.56, 0.54, 0.73, and 0.86 µM, respectively) and moderate antioxidant activity. Moreover, compounds 5a, 5d, 5e, 5f, and 5h showed potent anti-inflammatory properties, remarkable effects on self-induced Aß1-42 aggregation, and potent neuroprotective effect on Aß1-42-induced PC12 cell injury. Furthermore, compounds 5a, 5d, 5e, 5f, and 5h presented good blood-brain barrier permeation in vitro and drug-like properties. More interesting, the PET/CT images with [11C]5f demonstrated that [11C]5f could penetrate the BBB with a high brain uptake and exhibited good brain clearance kinetic property. Therefore, compound 5f would be a promising multi-functional agent for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Humanos , Ligandos , Estructura Molecular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Agregado de Proteínas , Relación Estructura-Actividad
14.
Bioconjug Chem ; 32(8): 1711-1718, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34139120

RESUMEN

Two tandem bromodomains (BD1 and BD2) of bromodomain and extraterminal domain (BET) family proteins have shown distinct roles in mediating gene transcription and expression. Inhibitors that interact with a specific bromodomain may contribute to a specific therapeutic potential with fewer side effects. However, little is known about this disease-related target. Positron emission tomography (PET) imaging could allow us to achieve in-depth knowledge of the BD2 bromodomain. Herein we describe the radiosynthesis and evaluation of [11C]1 as a BRD4 BD2 bromodomain PET imaging radioligand. Our preliminary PET imaging results in rodents demonstrated that [11C]1 had suitable biodistribution in peripheral organs and tissues. Further blocking studies indicated that [11C]1 had good binding specificity toward the BD2 bromodomain. This study may pave the way for the development of a PET radioligand specifically targeting BD1/2 bromodomains as well as for the biological mechanism investigation of BD1/2 bromodomains.


Asunto(s)
Sistemas de Liberación de Medicamentos , Marcaje Isotópico , Proteínas Nucleares/química , Tomografía de Emisión de Positrones , Factores de Transcripción/química , Animales , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
15.
Eur J Nucl Med Mol Imaging ; 48(1): 53-66, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32592040

RESUMEN

PURPOSE: Castration-resistant prostate cancer (CRPC) is the most common cause of death in men. The effectiveness of HDAC inhibitors has been demonstrated by preclinical models, but not in clinical studies, probably due to the ineffectively accumulation of HDACI in prostate cancer cells. The purpose of this work was to evaluate effects of a novel HDACI (CN133) on CRPC xenograft model and 22Rv1 cells, and develops methods, PET/CT imaging, to detect the therapeutic effects of CN133 on this cancer. METHODS: We designed and performed study to compare the effects of CN133 with SAHA on the 22Rv1 xenograft model and 22Rv1 cells. Using PET/CT imaging with [11C] Martinostat and [18F] FDG, we imaged mice bearing 22Rv1 xenografts before and after 21-day treatment with placebo and CN133 (1 mg/kg), and uptake on pre-treatment and post-treatment imaging was measured. The anti-tumor mechanisms of CN133 were investigated by qPCR, western blot, and ChIP-qPCR. RESULTS: Our data showed that the CN133 treatment led to a 50% reduction of tumor volume compared to the placebo that was more efficacious than SAHA treatment in this preclinical model. [11C] Martinostat PET imaging could identify early lesions of prostate cancer and can also be used to monitor the therapeutic effect of CN133 in CRPC. Using pharmacological approaches, we demonstrated that effects of CN133 showed almost 100-fold efficacy than SAHA treatment in the experiment of cell proliferation, invasion, and migration. The anti-tumor mechanisms of CN133 were due to the inhibition of AR signaling pathway activity by decreased HDAC 2 and 3 protein expressions. CONCLUSION: Taken together, these studies provide not only a novel epigenetic approach for prostate cancer therapy but also offering a potential tool, [11C] Martinostat PET/CT imaging, to detect the early phase of prostate cancer and monitor therapeutic effect of CN133. These results will likely lead to human trials in the future.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias de la Próstata Resistentes a la Castración , Animales , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Masculino , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Bioorg Med Chem Lett ; 34: 127777, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33418063

RESUMEN

We report herein the discovery of a positron emission tomography (PET) tracer for the (NOD)-like receptor protein 3 (NLRP3). Our recent medicinal chemistry campaign on developing sulfonamide-based NLRP3 inhibitors led to an analog, 1, with a methoxy substituent amenable to labeling with carbon-11. PET/CT imaging studies indicated that [11C]1 exhibited rapid blood-brain barrier (BBB) penetration and moderate brain uptake, as well as blockable uptake in the brain. [11C]1, thus suggesting the potential to serve as a useful tool for imaging NLRP3 inflammasome in living brains.


Asunto(s)
Descubrimiento de Drogas , Inflamasomas/análisis , Proteína con Dominio Pirina 3 de la Familia NLR/análisis , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/química , Sulfonamidas/química , Animales , Barrera Hematoencefálica/metabolismo , Radioisótopos de Carbono , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo
17.
Anesth Analg ; 132(4): 1146-1155, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889847

RESUMEN

BACKGROUND: Gut microbiota, a consortium of diverse microorganisms residing in the gastrointestinal tract, has emerged as a key player in neuroinflammatory responses, supporting the functional relevance of the "gut-brain axis." Chronic-constriction injury of the sciatic nerve (CCI) is a commonly used animal model of neuropathic pain with a major input from T cell-mediated immune responses. In this article, we sought to examine whether gut microbiota influences CCI neuropathic pain, and, if so, whether T-cell immune responses are implicated. METHODS: We used a mixture of wide-spectrum oral antibiotics to perturbate gut microbiota in mice and then performed CCI in these animals. Nociceptive behaviors, including mechanical allodynia and thermal hyperalgesia, were examined before and after CCI. Additionally, we characterized the spinal cord infiltrating T cells by examining interferon (IFN)-γ, interleukin (IL)-17, and Foxp3. Using a Foxp3-GFP-DTR "knock-in" mouse model that allows punctual depletion of regulatory T cells, we interrogated the role of these cells in mediating the effects of gut microbiota in the context of CCI neuropathic pain. RESULTS: We found that oral antibiotics induced gut microbiota changes and attenuated the development of CCI neuropathic pain, as demonstrated by dampened mechanical allodynia and thermal hyperalgesia. Percentages of IFN-γ-producing Th1 cells and Foxp3+ regulatory T cells were significantly different between animals that received oral antibiotics (Th1 mean = 1.0, 95% confidence interval [CI], 0.9-1.2; Foxp3 mean = 8.1, 95% CI, 6.8-9.3) and those that received regular water (Th1 mean = 8.4, 95% CI, 7.8-9.0, P < .01 oral antibiotics versus water, Cohen's d = 18.8; Foxp 3 mean = 2.8, 95% CI, 2.2-3.3, P < .01 oral antibiotics versus water, Cohen's d = 6.2). These T cells characterized a skewing from a proinflammatory to an anti-inflammatory immune profile induced by gut microbiota changes. Moreover, we depleted Foxp3+ regulatory T cells and found that their depletion reversed the protection of neuropathic pain mediated by gut microbiota changes, along with a dramatic increase of IFN-γ-producing Th1 cell infiltration in the spinal cord (before depletion mean = 2.8%, 95% CI, 2.2-3.5; after depletion mean = 9.1%, 95% CI, 7.2-11.0, p < .01 before versus after, Cohen's d = 5.0). CONCLUSIONS: Gut microbiota plays a critical role in CCI neuropathic pain. This role is mediated, in part, through modulating proinflammatory and anti-inflammatory T cells.


Asunto(s)
Bacterias/inmunología , Citocinas/metabolismo , Microbioma Gastrointestinal , Mediadores de Inflamación/metabolismo , Intestinos/microbiología , Ciática/inmunología , Médula Espinal/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Conducta Animal , Modelos Animales de Enfermedad , Disbiosis , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno , Intestinos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Umbral del Dolor , Ciática/metabolismo , Ciática/microbiología , Ciática/fisiopatología , Médula Espinal/metabolismo , Linfocitos T Reguladores/metabolismo , Células TH1/metabolismo
18.
Alzheimers Dement ; 17(12): 1988-1997, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33860595

RESUMEN

INTRODUCTION: Aging is an inevitable physiological process and the biggest risk factor of Alzheimer's disease (AD). Developing an imaging tracer to visualize aging-related changes in the brain may provide a useful biomarker in elucidating neuroanatomical mechanisms of AD. METHODS: We developed and characterized a new tracer that can be used to visualize SIRT1 in brains related to aging and AD by positron emission tomography imaging. RESULTS: The SIRT1 tracer displayed desirable brain uptake and selectivity, as well as stable metabolism and proper kinetics and distribution in rodent and nonhuman primate brains. This new tracer was further validated by visualizing SIRT1 in brains of AD transgenic mice, compared to nontransgenic animals. DISCUSSION: Our SIRT1 tracer not only enables, for the first time, the demonstration of SIRT1 in animal brains, but also allows visualization and recapitulation of AD-related SIRT1 neuropathological changes in animal brains.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Imagen Molecular , NAD/metabolismo , Sirtuina 1/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Tomografía de Emisión de Positrones
19.
J Cell Biochem ; 121(8-9): 3700-3710, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31709625

RESUMEN

Peroxisome proliferator activated receptor γ (PPARγ) is a member of the nuclear receptor family of transcription factors, which involved in inflammation regulating and bone remodeling. Rare studies explored the effects of PPARγ on mineralization and differentiation in cementoblasts. To explore the potential approaches to repair the damaged periodontal tissues especially for cementum, the present study aims to investigate the effects and the regulating mechanism of PPARγ on mineralization and differentiation in cementoblasts. Murine cementoblast cell lines (OCCM-30) were cultured in basic medium for 24 hours/48 hours or in mineralization medium for 3/7/10 days, respectively at addition of dimethyl sulphoxide, rosiglitazone (PPARγ agonist), GW9662 (PPARγ antagonist), lithium chloride (LiCl), tumor necrosis factor-α (TNF-α), or respective combination. Expression of mineralization genes alkaline phosphatase (ALP), runt related transcription factors 2 (RUNX2), and osteocalcin (OCN) were detected by quantitative real-time polymerase chain reaction or/and Western blot. ALP staining and alizarin red staining were used to evaluate the mineralization in OCCM-30 cells. The change of ß-catenin expression and translocation in cytoplasm/nucleus was analyzed by Western blot and immunofluorescence. The results showed that PPARγ agonist rosiglitazone improved the expression of ALP, RUNX2, and OCN, deepened ALP staining, increased mineralized nodules formation, and decreased ß-catenin expression in the nucleus. LiCl, an activator of the Wnt signaling pathway, inhibited the expression of mineralization genes and reversed the upregulated expression of mineralization genes resulted from rosiglitazone. Under inflammatory microenvironment, rosiglitazone not only suppressed the expression of interleukin-1ß caused by TNF-α, but improved the expression of mineralization genes in OCCM-30 cells. In conclusion, PPARγ could promote mineralization and differentiation in cementoblasts via inhibiting the Wnt/ß-catenin signaling pathway, which would shed new light on the treatment of periodontitis and periodontal tissue regeneration.

20.
Molecules ; 25(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106419

RESUMEN

The orexin receptor (OX) is critically involved in motivation and sleep-wake regulation and holds promising therapeutic potential in various mood disorders. To further investigate the role of orexin receptors (OXRs) in the living human brain and to evaluate the treatment potential of orexin-targeting therapeutics, we herein report a novel PET probe ([11C]CW24) for OXRs in the brain. CW24 has moderate binding affinity for OXRs (IC50 = 0.253 µM and 1.406 µM for OX1R and OX2R, respectively) and shows good selectivity to OXRs over 40 other central nervous system (CNS) targets. [11C]CW24 has high brain uptake in rodents and nonhuman primates, suitable metabolic stability, and appropriate distribution and pharmacokinetics for brain positron emission tomography (PET) imaging. [11C]CW24 warrants further evaluation as a PET imaging probe of OXRs in the brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen , Receptores de Orexina/aislamiento & purificación , Tomografía de Emisión de Positrones , Encéfalo/fisiología , Humanos , Receptores de Orexina/genética , Sueño/genética , Sueño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA