Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7905): 287-291, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418635

RESUMEN

Thermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage1,2 and conversion3-9 that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs (Fig. 1a) using an integrated back surface reflector and a tungsten emitter at 2,000 °C (ref. 10), TPV fabrication and performance have improved11,12. However, despite predictions that TPV efficiencies can exceed 50% (refs. 11,13,14), the demonstrated efficiencies are still only as high as 32%, albeit at much lower temperatures below 1,300 °C (refs. 13-15). Here we report the fabrication and measurement of TPV cells with efficiencies of more than 40% and experimentally demonstrate the efficiency of high-bandgap tandem TPV cells. The TPV cells are two-junction devices comprising III-V materials with bandgaps between 1.0 and 1.4 eV that are optimized for emitter temperatures of 1,900-2,400 °C. The cells exploit the concept of band-edge spectral filtering to obtain high efficiency, using highly reflective back surface reflectors to reject unusable sub-bandgap radiation back to the emitter. A 1.4/1.2 eV device reached a maximum efficiency of (41.1 ± 1)% operating at a power density of 2.39 W cm-2 and an emitter temperature of 2,400 °C. A 1.2/1.0 eV device reached a maximum efficiency of (39.3 ± 1)% operating at a power density of 1.8 W cm-2 and an emitter temperature of 2,127 °C. These cells can be integrated into a TPV system for thermal energy grid storage to enable dispatchable renewable energy. This creates a pathway for thermal energy grid storage to reach sufficiently high efficiency and sufficiently low cost to enable decarbonization of the electricity grid.


Asunto(s)
Electricidad , Calor , Rayos Infrarrojos , Temperatura
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35064079

RESUMEN

We present a surface-engineering approach that turns all liquids highly wetting, including ultra-high surface tension fluids such as mercury. Previously, highly wetting behavior was only possible for intrinsically wetting liquid/material combinations through surface roughening to enable the so-called Wenzel and hemiwicking states, in which liquid fills the surface structures and causes a droplet to exhibit a low contact angle when contacting the surface. Here, we show that roughness made of reentrant structures allows for a metastable hemiwicking state even for nonwetting liquids. Our surface energy model reveals that with liquid filled in the structure, the reentrant feature creates a local energy barrier, which prevents liquid depletion from surface structures regardless of the intrinsic wettability. We experimentally demonstrated this concept with microfabricated reentrant channels. Notably, we show an apparent contact angle as low as 35° for mercury on structured silicon surfaces with fluorinated coatings, on which the intrinsic contact angle of mercury is 143°, turning a highly nonwetting liquid/material combination highly wetting through surface engineering. Our work enables highly wetting behavior for previously inaccessible material/liquid combinations and thus expands the design space for various thermofluidic applications.

3.
Nano Lett ; 23(5): 1888-1896, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36802577

RESUMEN

Colloidal self-assembly has attracted significant interest in numerous applications including optics, electrochemistry, thermofluidics, and biomolecule templating. To meet the requirements of these applications, numerous fabrication methods have been developed. However, these are limited to narrow ranges of feature sizes, are incompatible with many substrates, and/or have low scalability, significantly limiting the use of colloidal self-assembly. In this work, we study the capillary transfer of colloidal crystals and demonstrate that this approach overcomes these limitations. Enabled by capillary transfer, we fabricate 2D colloidal crystals with nano-to-micro feature sizes spanning 2 orders of magnitude and on typically challenging substrates including those that are hydrophobic, rough, curved, or structured with microchannels. We developed and systemically validated a capillary peeling model, elucidating the underlying transfer physics. Due to its high versatility, good quality, and simplicity, this approach can expand the possibilities of colloidal self-assembly and enhance the performance of applications using colloidal crystals.

4.
Nano Lett ; 22(3): 1100-1107, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35061401

RESUMEN

Hygroscopic hydrogels hold significant promise for high-performance atmospheric water harvesting, passive cooling, and thermal management. However, a mechanistic understanding of the sorption kinetics of hygroscopic hydrogels remains elusive, impeding an optimized design and broad adoption. Here, we develop a generalized two-concentration model (TCM) to describe the sorption kinetics of hygroscopic hydrogels, where vapor transport in hydrogel micropores and liquid transport in polymer nanopores are coupled through the sorption at the interface. We show that the liquid transport due to the chemical potential gradient in the hydrogel plays an important role in the fast kinetics. The high water uptake is attributed to the expansion of hydrogel during liquid transport. Moreover, we identify key design parameters governing the kinetics, including the initial porosity, hydrogel thickness, and shear modulus. This work provides a generic framework of sorption kinetics, which bridges the knowledge gap between the fundamental transport and practical design of hygroscopic hydrogels.


Asunto(s)
Hidrogeles , Agua , Gases , Cinética , Polímeros
5.
Langmuir ; 38(3): 1252-1258, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35000388

RESUMEN

Ultra-high vacuum (UHV) is essential to many surface characterization techniques and is often applied with the intention of reducing exposure to airborne contaminants. Surface contamination under UHV is not well-understood, however, and introduces uncertainty in surface elemental characterization or hinders surface-sensitive manufacturing approaches. In this work, we investigated the time-dependent surface composition of gold samples with different initial levels of contamination under UHV over a period of 24 h with both experiments and physical modeling. Our results show that surface hydrocarbon concentration under UHV can be explained by molecular adsorption-desorption competition theory. Gold surfaces that were initially pristine adsorbed hydrocarbons over time under UHV; conversely, surfaces that were initially heavily contaminated desorbed hydrocarbons over time. During both adsorption and desorption, the concentration of contaminants tended toward the same equilibrium value. This study provides a comprehensive evaluation of the temporal evolution of surface contamination under UHV and highlights routes to mitigate surface contamination effects.

6.
Langmuir ; 38(14): 4371-4377, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35349299

RESUMEN

Bubble evolution plays a fundamental role in boiling and gas-evolving electrochemical systems. One key stage is bubble departure, which is traditionally considered to be buoyancy-driven. However, conventional understanding cannot provide the full physical picture, especially for departure events with small bubble sizes commonly observed in water splitting and high heat flux boiling experiments. Here, we report a new regime of bubble departure owing to the coalescence of two bubbles, where the departure diameter can be much smaller than the conventional buoyancy limit. We show the significant reduction of the bubble base area due to the dynamics of the three-phase contact line during coalescence, which promotes bubble departure. More importantly, combining buoyancy-driven and coalescence-induced bubble departure modes, we demonstrate a unified relationship between the departure diameter and nucleation site density. By elucidating how coalescing bubbles depart from a wall, our work provides design guidelines for energy systems which can largely benefit from efficient bubble departure.

7.
Nano Lett ; 21(19): 8160-8165, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34543039

RESUMEN

Airborne particular matter (PM) pollution is an increasing global issue and alternative sources of filter fibers are now an area of significant focus. Compared with relatively mature hazardous gas treatments, state of the art high-efficiency PM filters still lack thermal decomposition ability for organic PM pollutants, such as soot from coal-fired power plants and waste-combustion incinerators, resulting in frequent replacement, high cost, and second-hand pollution. In this manuscript, we propose a bottom-up synthesis method to make the first all-thermal-catalyst air filter (ATCAF). Self-assembled from ∼50 nm diameter TiO2 fibers, ATCAF could not only capture the combustion-generated PM pollutants with >99.999% efficiency but also catalyze the complete decomposition of the as-captured hydrocarbon pollutants at high temperature. It has the potential of in situ eliminating the PM pollutants from burning of hydrocarbon materials leveraging the burning heat.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Catálisis , Calor , Centrales Eléctricas
8.
BMC Cancer ; 21(1): 904, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364385

RESUMEN

BACKGROUND: In the phase 3 METEOR trial, cabozantinib improved progression-free survival (PFS) and overall survival (OS) versus everolimus in patients with advanced RCC after prior antiangiogenic therapy. METHODS: In this exploratory analysis, plasma biomarkers from baseline and week 4 from 621 of 658 randomized patients were analyzed for CA9, HGF, MET, GAS6, AXL, VEGF, VEGFR2, and IL-8. PFS and OS were analyzed by baseline biomarker levels as both dichotomized and continuous variables using univariate and multivariable methods. For on-treatment changes, PFS and OS were analyzed using fold change in biomarker levels at week 4. Biomarkers were considered prognostic if p < 0.05 and predictive if pinteraction < 0.05 for the interaction between treatment and biomarker. RESULTS: Hazard ratios for PFS and OS favored cabozantinib versus everolimus for both low and high baseline levels of all biomarkers (hazard ratios ≤0.78). In univariate analyses, low baseline HGF, AXL, and VEGF were prognostic for improvements in both PFS and OS with cabozantinib, and low HGF was prognostic for improvements in both PFS and OS with everolimus. Low AXL was predictive of relative improvement in PFS for cabozantinib versus everolimus. Results were generally consistent when baseline biomarkers were expressed as continuous variables, although none were predictive of benefit with treatment. In multivariable analysis, low baseline HGF was independently prognostic for improved PFS for both cabozantinib and everolimus; low HGF, GAS6, and VEGF were independently prognostic for improved OS with cabozantinib. No biomarkers were independently prognostic for OS with everolimus. On-treatment increases in some biomarkers appeared prognostic for PFS or OS with cabozantinib in univariate analyses; however, none were independently prognostic in multivariable analysis. CONCLUSIONS: PFS and OS were improved with cabozantinib versus everolimus at high and low baseline levels of all biomarkers. Low baseline HGF was consistently identified as a prognostic biomarker for improved PFS or OS with cabozantinib or everolimus, supporting further prospective evaluation of the prognostic significance of HGF in advanced RCC. TRIAL REGISTRATION: ClinicalTrials.gov NCT01865747 (registered on 05/31/2013).


Asunto(s)
Anilidas/uso terapéutico , Biomarcadores de Tumor/sangre , Carcinoma de Células Renales/sangre , Carcinoma de Células Renales/tratamiento farmacológico , Everolimus/uso terapéutico , Neoplasias Renales/sangre , Neoplasias Renales/tratamiento farmacológico , Piridinas/uso terapéutico , Anilidas/administración & dosificación , Anilidas/efectos adversos , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/mortalidad , Everolimus/administración & dosificación , Everolimus/efectos adversos , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/diagnóstico , Neoplasias Renales/mortalidad , Pronóstico , Piridinas/administración & dosificación , Piridinas/efectos adversos , Retratamiento , Resultado del Tratamiento
9.
Langmuir ; 37(43): 12568-12576, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34672609

RESUMEN

Self-assembly of artificial opals has garnered significant interest as a facile nanofabrication technique capable of producing highly ordered structures for optical, electrochemical, biomolecular, and thermal applications. In these applications, the optimum opal particle diameter can vary by several orders of magnitude because the properties of the resultant structures depend strongly on the feature size. However, current opal fabrication techniques only produce high-quality structures over a limited range of sphere sizes or require complex processes and equipment. In this work, the rational and simple fabrication of polycrystalline opals with diameters between 500 nm and 10 µm was demonstrated using slope self-assembly of colloids suspended in ethanol-water. The role of the various process parameters was elucidated through a scaling-based model that accurately captures the variations of opal substrate coverage for spheres of size 2 µm or smaller. For spheres of 10 µm and larger, capillary forces were shown to play a key role in the process dynamics. Based on these insights, millimeter-scale monolayered opals were successfully fabricated, while centimeter-scale opals were possible with sparse sphere stacking or small uncovered areas. These insights provide a guide for the simple and fast fabrication of opals that can be used as optical coatings, templates for high power density electrodes, molecule templates, and high-performance thermo-fluidic devices.

10.
Ann Allergy Asthma Immunol ; 126(6): 613-622, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33609771

RESUMEN

OBJECTIVE: To familiarize the reader with the most common cutaneous adverse events with immune checkpoint inhibitors (CPIs) and their grading and treatment. DATA SOURCES: Recent research articles, relevant review articles, and case series/reports in English from the PubMed database mostly, from 2010 onward. STUDY SELECTIONS: Most data are from retrospective studies and case series. Older studies regarding the mechanism were included if they were of particular importance. RESULTS: An understanding of this review should enable the reader to identify specific skin disorders in patients receiving immune CPIs, grade the adverse event, and be able to treat or refer the patient as needed. CONCLUSION: Allergists/immunologists need to be familiar with these immune-related cutaneous adverse events because their incidence will increase with the ever-expanding use of CPIs and, in particular, because patients will certainly continue to be referred suspecting drug allergies.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Enfermedades de la Piel/inducido químicamente , Humanos , Enfermedades de la Piel/inmunología
11.
Acc Chem Res ; 52(6): 1588-1597, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31090396

RESUMEN

Atmospheric water harvesting (AWH) is the capture and collection of water that is present in the air either as vapor or small water droplets. AWH has been recognized as a method for decentralized water production, especially in areas where liquid water is physically scarce, or the infrastructure required to bring water from other locations is unreliable or infeasible. The main methods of AWH are fog harvesting, dewing, and utilizing sorbent materials to collect vapor from the air. In this paper, we first distinguish between the geographic/climatic operating regimes of fog harvesting, dewing, and sorbent-based approaches based on temperature and relative humidity (RH). Because utilizing sorbents has the potential to be more widely applicable to areas which are also facing water scarcity, we focus our discussion on this approach. We discuss sorbent materials which have been developed for AWH and the material properties which affect system-level performance. Much of the recent materials development has focused on a single material metric, equilibrium vapor uptake in the material (kg of water uptake per kg of dry adsorbent), as found from the adsorption isotherm. This equilibrium property alone, however, is not a good indicator of the actual performance of the AWH system. Understanding material properties which affect heat and mass transport are equally important in the development of materials and components for AWH, because resistances associated with heat and mass transport in the bulk material dramatically change the system performance. We focus our discussion on modeling a solar thermal-driven system. Performance of a solar-driven AWH system can be characterized by different metrics, including L of water per m2 device per day or L of water per kg adsorbent per day. The former metric is especially important for systems driven by low-grade heat sources because the low power density of these sources makes this technology land area intensive. In either case, it is important to include rates in the performance metric to capture the effects of heat and mass transport in the system. We discuss our previously developed modeling framework which can predict the performance of a sorbent material packed into a porous matrix. This model connects mass transport across length scales, considering diffusion both inside a single crystal as well as macroscale geometric parameters, such as the thickness of a composite adsorbent layer. For a simple solar thermal-driven adsorption-based AWH system, we show how this model can be used to optimize the system. Finally, we discuss strategies which have been used to improve heat and mass transport in the design of adsorption systems and the potential for adsorption-based AWH systems for decentralized water supplies.

12.
Langmuir ; 36(49): 15112-15118, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33259214

RESUMEN

Bubble nucleation is ubiquitous in gas evolving reactions that are instrumental for a variety of electrochemical systems. Fundamental understanding of the nucleation process, which is critical to system optimization, remains limited as prior works generally focused on the thermodynamics and have not considered the coupling between surface geometries and different forms of transport in the electrolytes. Here, we establish a comprehensive transport-based model framework to identify the underlying mechanism for bubble nucleation on gas evolving electrodes. We account for the complex effects on the electrical field, ion migration, ion diffusion, and gas diffusion arising from surface heterogeneities and gas pockets initiated from surface crevices. As a result, we show that neglecting these effects leads to significant underprediction of the energy needed for nucleation. Our model provides a non-monotonic relationship between the surface cavity size and the overpotential required for nucleation, which is physically more consistent than the monotonic relationship suggested by a traditional thermodynamics-based model. We also identify the significance of the gas diffuse layer thickness, a parameter controlled by external flow fields and overall electrode geometries, which has been largely overlooked in previous models. Our model framework offers guidelines for practical electrochemical systems whereby, without changing the surface chemistry, nucleation on electrodes can be tuned by engineering the cavity size and the gas diffuse layer thickness.

13.
Curr Allergy Asthma Rep ; 20(8): 31, 2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32506151

RESUMEN

PURPOSE OF REVIEW: Both adults and children are frequently affected by symptoms of itchy urticarial lesions that cause considerable distress and impact nearly all their daily activities. A comprehensive history is critical to identify the etiology in patients who have chronic spontaneous urticaria (CSU) (those with symptoms for > 6 weeks) and is more important than extensive laboratory serum tests. Unfortunately, most of the current treatment guidelines have been based on data from adult studies since there is rare data on children. These treatment algorithms have been subsequently used to extrapolate treatments for children. RECENT FINDINGS: Current treatment regiments do not achieve complete success in all patients, neither adults nor children. As the pathophysiology of chronic urticaria slowly becomes defined, novel therapies are being tested which target these individual molecular pathways to treat those that continue to experience symptoms. Future studies are required to establish the natural history, risks/benefits and efficacy of current medications, and biologics used to treat CSU in children.


Asunto(s)
Urticaria Crónica/diagnóstico , Urticaria Crónica/terapia , Niño , Enfermedad Crónica , Humanos
14.
Nano Lett ; 19(7): 4745-4751, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31184905

RESUMEN

Atomically thin two-dimensional (2D) materials have shown great potential for applications in nanoscale electronic and optical devices. A fundamental property of these 2D flakes that needs to be well-characterized is the thermal expansion coefficient (TEC), which is instrumental to the dry transfer process and thermal management of 2D material-based devices. However, most of the current studies of 2D materials' TEC extensively rely on simulations due to the difficulty of performing experimental measurements on an atomically thin, micron-sized, and optically transparent 2D flake. In this work, we present a three-substrate approach to characterize the TEC of monolayer molybdenum disulfide (MoS2) using micro-Raman spectroscopy. The temperature dependence of the Raman peak shift was characterized with three different substrate conditions, from which the in-plane TEC of monolayer MoS2 was extracted on the basis of lattice symmetries. Independently from two different phonon modes of MoS2, we measured the in-plane TECs as (7.6 ± 0.9) × 10-6 K-1 and (7.4 ± 0.5) × 10-6 K-1, respectively, which are in good agreement with previously reported values based on first-principle calculations. Our work is not only useful for thermal mismatch reduction during material transfer or device operation but also provides a general experimental method that does not rely on simulations to study key properties of 2D materials.

15.
Opt Express ; 27(4): A39-A50, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876003

RESUMEN

Haze in optically transparent aerogels severely degrades the visual experience, which has prevented their adoption in windows despite their outstanding thermal insulation property. Previous studies have primarily relied on experiments to characterize haze in aerogels, however, a theoretical framework to systematically investigate haze in porous media is lacking. In this work, we present a radiative transfer model that can predict haze in aerogels based on their physical properties. The model is validated using optical characterization of custom-fabricated, highly-transparent monolithic silica aerogels. The fundamental relationships between the aerogel structure and haze highlighted in this study could lead to a better understanding of light-matter interaction in a wide range of transparent porous materials and assist in the development of low-haze silica aerogels for high-performance glazing units to reduce building energy consumption.

16.
J Am Chem Soc ; 140(50): 17591-17596, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30462920

RESUMEN

Rising global standards of living coupled to the recent agreement to eliminate hydrofluorocarbon refrigerants are creating intense pressure to develop more sustainable climate control systems. In this vein, the use of water as the refrigerant in adsorption heat pumps is highly attractive, but such adsorption systems are constrained to large size and poor efficiency by the characteristics of currently employed water sorbents. Here we demonstrate control of the relative humidity of water uptake by modulating the pore size in a family of isoreticular triazolate metal-organic frameworks. Using this method, we identify a pair of materials with stepped, nonoverlapping water isotherms that can function in tandem to provide continuous cooling with a record ideal coefficient of performance of 1.63. Additionally, when used in a single-stage heat pump, the microporous Ni2Cl2BBTA has the largest working capacity of any material capable of generating a 25 °C difference between ambient and chiller output.

17.
Opt Express ; 26(10): A462-A479, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801266

RESUMEN

The performance of incandescent light bulbs and thermophotovoltaic devices is fundamentally limited by our ability to tailor the emission spectrum of the thermal emitter. While much work has focused on improving the spectral selectivity of emitters and filters, relatively low view factors between the emitter and filter limit the efficiency of the systems. In this work, we investigate the use of specular side reflectors between the emitter and filter to increase the effective view factor and thus system efficiency. Using an analytical model and experiments, we demonstrate significant gains in efficiency (>10%) for systems converting broadband thermal radiation to a tailored spectrum using low-cost and easy-to-implement specular side reflectors.

18.
Langmuir ; 34(30): 9085-9095, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29989821

RESUMEN

Condensation is an important physical process and has direct relevance for a range of engineering applications, including heat transfer, antifrosting, and self-cleaning. Understanding the mechanism of droplet growth during condensation is an important aspect, but past works have not typically considered the dynamics of the multiscale process. In this paper, we developed a dynamic growth model, which considers the continuous and multiscale nature of the droplet growth process from several nanometers to hundreds of microns. This model couples the transient phase change heat transfer and two-phase flow both inside and outside the droplet. Accordingly, the energy transport is distinct from the classical pure conduction model. We show that convection near the liquid-vapor interface and inside the droplets plays an increasingly important role as droplets grow and finally dominates the energy transport process. Driven by strong convection, the droplets mix well and the discrete layers of temperature observed in the pure conduction model disappear at the microscale. This model that considers convection can lead to over 4 times higher predicted overall heat transfer than that obtained with the pure conduction model. The interfacial mass flow through the liquid-vapor interface is the dominant factor responsible for the strong convection. We studied the critical radius where convection starts to have a significant influence on droplet growth under different subcooling temperatures and contact angles. Droplets have smaller critical radii under larger subcooling temperatures or larger contact angles, ranging from 0.5 to 20 µm. This work identifies the modes of energy transport in condensation at different scales, which not only enhances our fundamental understanding of individual droplet growth but provides design guidelines for various dropwise and jumping-droplet condensation research.

19.
Langmuir ; 34(6): 2386-2395, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29338268

RESUMEN

The importance of surfactants to various industries necessitates a predictive understanding of their surface tension and adsorption behavior in terms of molecular characteristics. Previous models are highly empirical, require fitting parameters, and have limited applicability at various temperatures. Here, we provide a surface tension model based on statistical mechanics that (1) is thermodynamically consistent, (2) provides a higher predictive power, wherein surface tension can be calculated for any tail length, concentration, and temperature from molecular parameters, and (3) provides a physical understanding of the important molecular interactions at play. This model is applicable to both nonionic and ionic surfactants, where the effects of the electric double layer have been taken into account in the latter case. For nonionic surfactants, we were able to extend our model to predict dynamic surface tension as well. We have validated our model with tensiometry experiments for various surfactants, concentrations, and temperatures. In addition, we have validated our model with a diverse set of literature data, wherein agreement within a few mN M-1 and a correct prediction of phase change behavior is shown. The model could enable a more informed design of surfactant systems and serve as the theoretical basis for theory on more complex surfactant systems such as mixtures.

20.
Langmuir ; 34(15): 4658-4664, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29578348

RESUMEN

Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA