Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Funct Integr Genomics ; 18(6): 685-700, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29909521

RESUMEN

The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.


Asunto(s)
Daucus carota/genética , Evolución Molecular , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Daucus carota/clasificación , Daucus carota/crecimiento & desarrollo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Selección Genética
2.
BMC Plant Biol ; 18(1): 8, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304728

RESUMEN

BACKGROUND: Carrot which contains lots of nutrients has a large demand around the world. The soluble sugar content in fleshy root of carrot directly influences its taste and quality. Sucrose, as an important member of soluble sugar, is the main product of photosynthesis in higher plants and it plays pivotal roles in physiological processes including energy supply, signal transduction, transcriptional regulation, starch and cellulose synthesis, and stress tolerance. Sucrose synthase is a key enzyme involved in sucrose metabolism and is closely related to sucrose content. However, the molecular mechanism involved in sucrose metabolism in carrot has lagged behind. RESULTS: Here, carrot roots of five developmental stages from four carrot cultivars were collected, and the contents of soluble sugar and sucrose in different stages and cultivars were surveyed. Three DcSus genes (DcSus1, DcSus2, and DcSus3), with lengths of 2427 bp, 2454 bp and 2628 bp, respectively, were identified and cloned in carrot. Phylogenetic analysis from the deduced amino acid sequences suggested that three DcSus were clustered into three distinct groups (SUSI, II and III). Results of enzymatic profiles demonstrated that the DcSus activities showed decrease trends during taproot development. Correlation analysis indicated that the DcSus activity showed negative correlation with soluble sugar content and strong negative correlation with sucrose concentration. Quantitative real-time PCR analysis showed that the expression profiles of the DcSus genes are significantly different in carrot tissues (root, leaf blade, and petiole), and the expression levels of the DcSus genes in the leaf blade were much higher than that in the root and petiole. The expression profiles of DcSus genes showed strong negative correlation with both sucrose content and soluble sugar content. CONCLUSIONS: During carrot root development, the soluble sugar content and sucrose content showed increasing trends, while DcSus activities had persisting declinations, which may be due to the decreasing expression levels of genes encoding sucrose synthase. Our data demonstrate that synthesis of sucrose in carrot tissue is closely related with DcSus genes. The results from our study would not only provide effective insights of sucrose metabolism in carrot, but also are beneficial for biologists to improve carrot quality.


Asunto(s)
Daucus carota/genética , Glucosiltransferasas/genética , Sacarosa/metabolismo , Transcriptoma , Daucus carota/metabolismo , Glucosiltransferasas/metabolismo
3.
Mol Genet Genomics ; 293(4): 861-871, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29497811

RESUMEN

Carrot (Daucus carota L.) is one of the most economically important root vegetables in the world, providing numerous nutrients for human health. China is the largest country of carrot production in the world, and 'Kurodagosun' has been a major carrot variety in China. Carrot material used in this study was the inbred line 'DC-27', which was derived by forced selfing from 'Kurodagosun'. To understand the genetic system and plant-specific genes of 'Kurodagosun', we report the draft genome sequence of carrot 'DC-27' assembled using a combination of Roche454 and HiSeq 2000 sequencing technologies to achieve 32-fold genome coverage. A total of 31,891 predicted genes were identified. These assembled sequences provide candidate genes involved in biological processes including stress response and carotenoid biosynthesis. Genomic sequences corresponding to 371.6 Mb was less than 473 Mb, which is the estimated genome size. The availability of a draft sequence of the 'DC-27' genome advances knowledge on the biological research and breeding of carrot, as well as other Apiaceae plants. The 'DC-27' genome sequence data also provide a new resource to explore the evolution of other higher plants.


Asunto(s)
Daucus carota/genética , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Carotenoides/biosíntesis , Carotenoides/genética , China , Daucus carota/metabolismo , Japón , Estrés Fisiológico/genética
4.
Plant Cell Rep ; 37(7): 1021-1032, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29680943

RESUMEN

KEY MESSAGE: Hypoxia enhances lignification of carrot root. Hypoxia stress was thought to be one of the major abiotic stresses that inhibiting the growth and development of higher plants. The genes encoding the plant alcohol dehydrogenase (ADH-P) were induced when suffering hypoxia. To investigate the impact of hypoxia on the carrot root growth, carrot plants were cultivated in the hydroponics with or without aeration. Morphological characteristics, anatomical structure, lignin content, and the expression profiles of DcADH-P genes and lignin biosynthesis-related genes were measured. Six DcADH-P genes were identified from the carrot genome. The expression profiles of only three (DcADH-P1, DcADH-P2, and DcADH-P3) genes could be detected and the other three (DcADH-P4, DcADH-P5, and DcADH-P6) could not be detected when carrot cultivated in the solution without aeration. In addition, carrot roots had more lignin content, aerenchyma and less fresh weight when cultivated in the solution without aeration. These results suggested that hypoxia could enhance the lignification and affect anatomical structure of the carrot root. However, the expression levels of the genes related to lignin biosynthesis were down-regulated under the hypoxia. The enhancement of lignification may be the consequence of the structure changes in the carrot root. Our work was potentially helpful for studying the effect of hypoxia on carrot growth and may provide useful information for carrot hydroponics.


Asunto(s)
Alcohol Deshidrogenasa/genética , Daucus carota/anatomía & histología , Hidroponía/métodos , Lignina/metabolismo , Raíces de Plantas/anatomía & histología , Daucus carota/genética , Daucus carota/crecimiento & desarrollo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Hipoxia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
5.
Physiol Plant ; 161(4): 468-485, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28767140

RESUMEN

Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.


Asunto(s)
Apium/metabolismo , Clorofila/metabolismo , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/metabolismo , Liasas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Temperatura
6.
Mol Genet Genomics ; 291(6): 2131-2143, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27604234

RESUMEN

Ascorbic acid (AsA) is an important nutrient in the human body and performs various healthy functions. With considerable medicinal properties, celery (Apium graveolens L.) could be a good source of AsA for human health. However, the biosynthetic, recycling, and degradation pathways of AsA in celery have yet to be characterized. To study the metabolic pathways involved in AsA, the genes involved in AsA biosynthesis, recycling, and degradation were isolated from celery, and their expression profiles and AsA levels were analyzed in the leaf blades and petioles of two celery varieties at three different growth stages. AsA levels were higher in 'Ventura' compared with 'Liuhehuangxinqin' in both tissues possibly because of different transcription levels of genes, such as L-galactose dehydrogenase (GalDH), L-galactono-1,4-lactone dehydrogenase (GalLDH), and glutathione reductase (GR). Results revealed that the D-mannose/L-galactose pathway may be the predominant pathway in celery, and the D-galacturonic acid pathway appeared to contribute largely to AsA accumulation in petioles than in leaf blades in 'Liuhehuangxinqin.' AsA contents are regulated by complex regulatory mechanisms and vary at different growth stages, tissues, and varieties in celery. The results provide novel insights into AsA metabolic pathways in leaf during celery growth and development.


Asunto(s)
Apium/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Apium/genética , Ácido Ascórbico/metabolismo , Vías Biosintéticas , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética
7.
Plant Cell Rep ; 35(8): 1743-55, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27160835

RESUMEN

KEY MESSAGE: Carrot root development associates lignin deposition and regulation. Carrot is consumed worldwide and is a good source of nutrients. However, excess lignin deposition may reduce the taste and quality of carrot root. Molecular mechanisms underlying lignin accumulation in carrot are still lacking. To address this problem, we collected taproots of wild and cultivated carrots at five developmental stages and analyzed the lignin content and characterized the lignin distribution using histochemical staining and autofluorescence microscopy. Genes involved in lignin biosynthesis were identified, and their expression profiles were determined. Results showed that lignin was mostly deposited in xylem vessels of carrot root. In addition, lignin content continuously decreased during root development, which was achieved possibly by reducing the expression of the genes involved in lignin biosynthesis. Carrot root may also prevent cell lignification to meet the demands of taproot growth. Our results will serve as reference for lignin biosynthesis in carrot and may also assist biologists to improve carrot quality.


Asunto(s)
Daucus carota/genética , Perfilación de la Expresión Génica , Genes de Plantas , Lignina/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Transcriptoma/genética , Vías Biosintéticas/genética , Daucus carota/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Microscopía Fluorescente , Desarrollo de la Planta/genética , Xilema/metabolismo
8.
J Biol Chem ; 289(27): 19031-41, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24867954

RESUMEN

Hormone-sensitive lipases (HSLs) are widely distributed in microorganisms, plants, and animals. Microbial HSLs are classified into two subfamilies, an unnamed new subfamily and the GDSAG motif subfamily. Due to the lack of structural information, the detailed catalytic mechanism of the new subfamily is not yet clarified. Based on sequence analysis, we propose to name the new subfamily as the GTSAG motif subfamily. We identified a novel HSL esterase E25, a member of the GTSAG motif subfamily, by functional metagenomic screening, and resolved its structure at 2.05 Å. E25 is mesophilic (optimum temperature at 50 °C), salt-tolerant, slightly alkaline (optimum pH at 8.5) for its activity, and capable of hydrolyzing short chain monoesters (C2-C10). E25 tends to form dimers both in the crystal and in solution. An E25 monomer contains an N-terminal CAP domain, and a classical α/ß hydrolase-fold domain. Residues Ser(186), Asp(282), and His(312) comprise the catalytic triad. Structural and mutational analyses indicated that E25 adopts a dimerization pattern distinct from other HSLs. E25 dimer is mainly stabilized by an N-terminal loop intersection from the CAP domains and hydrogen bonds and salt bridges involving seven highly conserved hydrophilic residues from the catalytic domains. Further analysis indicated that E25 also has some catalytic profiles different from other HSLs. Dimerization is essential for E25 to exert its catalytic activity by keeping the accurate orientation of the catalytic Asp(282) within the catalytic triad. Our results reveal the structural basis for dimerization and catalysis of an esterase from the GTSAG motif subfamily of the HSL family.


Asunto(s)
Bacterias/enzimología , Biocatálisis , Genómica , Multimerización de Proteína , Esterol Esterasa/química , Esterol Esterasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bacterias/genética , Biblioteca Genómica , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Esterol Esterasa/genética
9.
BMC Plant Biol ; 15: 290, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667233

RESUMEN

BACKGROUND: Gibberellins stimulate cell elongation and expansion during plant growth and development. Carrot is a root plant with great value and undergoes obvious alteration in organ size over the period of plant growth. However, the roles of gibberellins in carrot remain unclear. RESULTS: To investigate the effects of gibberelliins on the growth of carrot, we treated carrot plants with gibberellic acid 3 (GA3) or paclobutrazol (a gibberellin inhibitor). The results found that GA3 dramatically reduced the root growth but stimulated the shoot growth of carrot. It also significantly promoted xylem development in the tuberous root of carrot. In addition, transcript levels of genes related to gibberellins, auxin, cytokinins, abscisic acid and brassinolides were altered in response to increased or reduced gibberellins. CONCLUSIONS: The inhibited tuberous root growth but enhanced shoot growth in plants treated with GA3 can be principally attributed to the changes in the xylem development of carrot roots. Negative feedback regulation mechanism of gibberellin biosynthesis also occurred in response to altered gibberellin accumulation. Gibberellins may interact with other hormones to regulate carrot plant growth through crosstalk mechanisms. This study provided novel insights into the functions of gibberellins in the growth and development of carrot.


Asunto(s)
Daucus carota/genética , Daucus carota/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Daucus carota/anatomía & histología , Daucus carota/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
10.
Mol Genet Genomics ; 290(4): 1379-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25666462

RESUMEN

Previous studies have indicated that hormonal control is essential for plant root growth. The root of the carrot is an edible vegetable with a high nutritional value. However, molecular mechanisms underlying hormone-mediated root growth of carrot have not been illustrated. Therefore, the present study collected carrot root samples from four developmental stages, and performed transcriptome sequencing to understand the molecular functions of plant hormones in carrot root growth. A total of 160,227 transcripts were generated from our transcriptome, which were assembled into 32,716 unigenes with an average length of 1,453 bp. A total of 4,818 unigenes were found to be differentially expressed between the four developmental stages. In total, 87 hormone-related differentially expressed genes were identified, and the roles of the hormones are extensively discussed. Our results suggest that plant hormones may regulate carrot root growth in a phase-dependent manner, and these findings will provide valuable resources for future research on carrot root development.


Asunto(s)
Daucus carota/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Raíces de Plantas/genética , Transcriptoma/genética , Análisis por Conglomerados , Daucus carota/crecimiento & desarrollo , Daucus carota/metabolismo , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Tiempo
11.
Mol Biol Rep ; 42(5): 893-905, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25403331

RESUMEN

Heat shock factors (HSFs) play key roles in the response to abiotic stress in eukaryotes. In this study, 35 DcHSFs were identified from carrot (Daucus carota L.) based on the carrot genome database. All 35 DcHSFs were divided into three classes (A, B, and C) according to the structure and phylogenetic relationships of four different plants, namely, Arabidopsis thaliana, Vitis vinifera, Brassica rapa, and Oryza sativa. Comparative analysis of algae, gymnosperms, and angiosperms indicated that the numbers of HSF transcription factors were related to the plant's evolution. The expression profiles of five DcHsf genes (DcHsf 01, DcHsf 02, DcHsf 09, DcHsf 10, and DcHsf 16), which selected from each subfamily (A, B, and C), were detected by quantitative real-time PCR under abiotic stresses (cold, heat, high salinity, and drought) in two carrot cultivars, D. carota L. cvs. Kurodagosun and Junchuanhong. The expression levels of DcHsfs were markedly increased by heat stress, except that of DcHsf 10, which was down regulated. The expression profiles of different DcHsfs in the same class also differed under various stress treatments. The expression profiles of these DcHsfs were also different in tissues of two carrot cultivars. This study is the first to identify and characterize the DcHSF family transcription factors in plants of Apiaceae using whole-genome analysis. The results of this study provide an in-depth understanding of the DcHSF family transcription factors' structure, function, and evolution in carrot.


Asunto(s)
Proteínas de Unión al ADN/genética , Daucus carota/genética , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Transcriptoma , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/metabolismo , Daucus carota/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/clasificación , Proteínas de Choque Térmico/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
12.
BMC Plant Biol ; 14: 262, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25269413

RESUMEN

BACKGROUND: Carrots (Daucus carota L.) are among the 10 most economically important vegetable crops grown worldwide. Purple carrot cultivars accumulate rich cyanidin-based anthocyanins in a light-independent manner in their taproots whereas other carrot color types do not. Anthocyanins are important secondary metabolites in plants, protecting them from damage caused by strong light, heavy metals, and pathogens. Furthermore, they are important nutrients for human health. Molecular mechanisms underlying anthocyanin accumulation in purple carrot cultivars and loss of anthocyanin production in non-purple carrot cultivars remain unknown. RESULTS: The taproots of the three purple carrot cultivars were rich in anthocyanin, and levels increased during development. Conversely, the six non-purple carrot cultivars failed to accumulate anthocyanins in the underground part of taproots. Six novel structural genes, CA4H1, CA4H2, 4CL1, 4CL2, CHI1, and F3'H1, were isolated from purple carrots. The expression profiles of these genes, together with other structural genes known to be involved in anthocyanin biosynthesis, were analyzed in three purple and six non-purple carrot cultivars at the 60-day-old stage. PAL3/PAL4, CA4H1, and 4CL1 expression levels were higher in purple than in non-purple carrot cultivars. Expression of CHS1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 was highly correlated with the presence of anthocyanin as these genes were highly expressed in purple carrot taproots but not or scarcely expressed in non-purple carrot taproots. CONCLUSIONS: This study isolated six novel structural genes involved in anthocyanin biosynthesis in carrots. Among the 13 analyzed structural genes, PAL3/PAL4, CA4H1, 4CL1, CHS1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 may participate in anthocyanin biosynthesis in the taproots of purple carrot cultivars. CHS1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 may lead to loss of light-independent anthocyanin production in orange and yellow carrots. These results suggest that numerous structural genes are involved in anthocyanin production in the taproots of purple carrot cultivars and in the loss of anthocyanin production in non-purple carrots. Unexpressed or scarcely expressed genes in the taproots of non-purple carrot cultivars may be caused by the inactivation of regulator genes. Our results provide new insights into anthocyanin biosynthesis at the molecular level in carrots and for other root vegetables.


Asunto(s)
Antocianinas/biosíntesis , Daucus carota/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Antocianinas/metabolismo , Daucus carota/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética
13.
PeerJ ; 12: e16898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332807

RESUMEN

Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.


Asunto(s)
Agrobacterium tumefaciens , Quimiotaxis , Agrobacterium tumefaciens/genética , Quimiotaxis/genética , Tumores de Planta/microbiología , Plantas , Globinas
14.
J Adv Res ; 46: 31-47, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35753652

RESUMEN

BACKGROUND: Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW: Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW: Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.


Asunto(s)
Vías Biosintéticas , Biotecnología , Licopeno/metabolismo , Ingeniería Metabólica/métodos , Reactores Biológicos
15.
Hortic Res ; 10(7): uhad103, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37786729

RESUMEN

Carrot (Daucus carota) is an Apiaceae plant with multi-colored fleshy roots that provides a model system for carotenoid research. In this study, we assembled a 430.40 Mb high-quality gapless genome to the telomere-to-telomere (T2T) level of "Kurodagosun" carrot. In total, 36 268 genes were identified and 34 961 of them were functionally annotated. The proportion of repeat sequences in the genome was 55.3%, mainly long terminal repeats. Depending on the coverage of the repeats, 14 telomeres and 9 centromeric regions on the chromosomes were predicted. A phylogenetic analysis showed that carrots evolved early in the family Apiaceae. Based on the T2T genome, we reconstructed the carotenoid metabolic pathway and identified the structural genes that regulate carotenoid biosynthesis. Among the 65 genes that were screened, 9 were newly identified. Additionally, some gene sequences overlapped with transposons, suggesting replication and functional differentiation of carotenoid-related genes during carrot evolution. Given that some gene copies were barely expressed during development, they might be functionally redundant. Comparison of 24 cytochrome P450 genes associated with carotenoid biosynthesis revealed the tandem or proximal duplication resulting in expansion of CYP gene family. These results provided molecular information for carrot carotenoid accumulation and contributed to a new genetic resource.

16.
PeerJ ; 10: e12922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223206

RESUMEN

Laccase, as a copper-containing polyphenol oxidase, primarily functions in the process of lignin, anthocyanin biosynthesis, and various abiotic/biotic stresses. In this study, forty-eight laccase members were identified in the eggplant genome. Only forty-two laccase genes from eggplant (SmLACs) were anchored unevenly in 12 chromosomes, the other six SmLACs were mapped on unanchored scaffolds. Phylogenetic analysis indicated that only twenty-five SmLACs were divided into six different groups on the basis of groups reported in Arabidopsis. Gene structure analysis revealed that the number of exons ranged from one to 13. Motif analysis revealed that SmLACs included six conserved motifs. In aspects of gene duplication analysis, twenty-one SmLACs were collinear with LAC genes from Arabidopsis, tomato or rice. Cis-regulatory elements analysis indicated many SmLACs may be involved in eggplant morphogenesis, flavonoid biosynthesis, diverse stresses and growth/development processes. Expression analysis further confirmed that a few SmLACs may function in vegetative and reproductive organs at different developmental stages and also in response to one or multiple stresses. This study would help to further understand and enrich the physiological function of the SmLAC gene family in eggplant, and may provide high-quality genetic resources for eggplant genetics and breeding.


Asunto(s)
Arabidopsis , Solanum melongena , Solanum melongena/genética , Lacasa/genética , Filogenia , Fitomejoramiento
17.
PeerJ ; 10: e14602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570011

RESUMEN

Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.


Asunto(s)
Arabidopsis , Ajo , Humanos , Factores de Transcripción/genética , Transcriptoma , Arabidopsis/genética , Ajo/genética , Activación Transcripcional , Meristema/genética , Filogenia , Cotiledón/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética
18.
Protoplasma ; 257(3): 853-861, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31863170

RESUMEN

Fruit shape and ripening are major horticultural traits for many fruits and vegetable crops. Changes in fruit shape and ripening are often accomplished by altered cell division or cell expansion patterns. Gibberellic acids (GAs) are essential for tomato fruit development; however, the exact role and the underlying mechanism are still elusive. To elucidate the relationship between gibberellins and fruit shape and ripening in tomato, GA3 and gibberellin biosynthesis inhibitor paclobutrazol (PAC) were applied to tomato. Fruit shape index was increased when GA3 was applied, which was mainly attributed to the increased organ elongation. The expression levels of genes involved in cell elongation and expansion were altered at the same time. In addition, GA delayed the ripening time by regulating the transcript levels of ethylene-related genes. By contrast, PAC application decreased fruit shape index and shortened fruit ripening time. These results demonstrate that manipulation of GA levels can simultaneously influence tomato fruit shape and ripening. Further studies aimed to regulate fruit shape and ripening can be achieved by altering GA levels.


Asunto(s)
Frutas/crecimiento & desarrollo , Giberelinas/efectos adversos , Desarrollo de la Planta/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Triazoles/efectos adversos , Solanum lycopersicum/crecimiento & desarrollo
19.
PeerJ ; 8: e10492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354430

RESUMEN

Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.

20.
Hortic Res ; 7: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31934340

RESUMEN

Celery (Apium graveolens L.) is a vegetable crop in the Apiaceae family that is widely cultivated and consumed because it contains necessary nutrients and multiple biologically active ingredients, such as apigenin and terpenoids. Here, we report the genome sequence of celery based on the use of HiSeq 2000 sequencing technology to obtain 600.8 Gb of data, achieving ~189-fold genome coverage, from 68 sequencing libraries with different insert sizes ranging from 180 bp to 10 kb in length. The assembled genome has a total sequence length of 2.21 Gb and consists of 34,277 predicted genes. Repetitive DNA sequences represent 68.88% of the genome sequences, and LTR retrotransposons are the main components of the repetitive sequences. Evolutionary analysis showed that a recent whole-genome duplication event may have occurred in celery, which could have contributed to its large genome size. The genome sequence of celery allowed us to identify agronomically important genes involved in disease resistance, flavonoid biosynthesis, terpenoid metabolism, and other important cellular processes. The comparative analysis of apigenin biosynthesis genes among species might explain the high apigenin content of celery. The whole-genome sequences of celery have been deposited at CeleryDB (http://apiaceae.njau.edu.cn/celerydb). The availability of the celery genome data advances our knowledge of the genetic evolution of celery and will contribute to further biological research and breeding in celery as well as other Apiaceae plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA