Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(13): 2316-2331.e7, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37390815

RESUMEN

The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Glucosa , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética
2.
PLoS Pathog ; 19(8): e1011578, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37556475

RESUMEN

Fungal insect pathogens have evolved diverse mechanisms to evade host immune recognition and defense responses. However, identification of fungal factors involved in host immune evasion during cuticular penetration and subsequent hemocoel colonization remains limited. Here, we report that the entomopathogenic fungus Beauveria bassiana expresses an endo-ß-1,3-glucanase (BbEng1) that functions in helping cells evade insect immune recognition/ responses. BbEng1 was specifically expressed during infection, in response to host cuticle and hemolymph, and in the presence of osmotic or oxidative stress. BbEng1 was localized to the fungal cell surface/ cell wall, where it acts to remodel the cell wall pathogen associated molecular patterns (PAMPs) that can trigger host defenses, thus facilitating fungal cell evasion of host immune defenses. BbEng1 was secreted where it could bind to fungal cells. Cell wall ß-1,3-glucan levels were unchanged in ΔBbEng1 cells derived from in vitro growth media, but was elevated in hyphal bodies, whereas glucan levels were reduced in most cell types derived from the BbEng1 overexpressing strain (BbEng1OE). The BbEng1OE strain proliferated more rapidly in the host hemocoel and displayed higher virulence as compared to the wild type parent. Overexpression of their respective Eng1 homologs or of BbEng1 in the insect fungal pathogens, Metarhizium robertsii and M. acridum also resulted in increased virulence. Our data support a mechanism by which BbEng1 helps the fungal pathogen to evade host immune surveillance by decreasing cell wall glucan PAMPs, promoting successful fungal mycosis.


Asunto(s)
Beauveria , Metarhizium , Animales , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Glucanos/metabolismo , Beauveria/metabolismo , Sistema Inmunológico/metabolismo , Pared Celular/metabolismo , Insectos/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
New Phytol ; 242(2): 507-523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362849

RESUMEN

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Asunto(s)
Metilación de ADN , Tetraploidía , Metilación de ADN/genética , Triticum/genética , Epigénesis Genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
4.
J Med Virol ; 96(7): e29772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949201

RESUMEN

The distinct composition and immune response characteristics of bats' innate and adaptive immune systems, which enable them to serve as host of numerous serious zoonotic viruses without falling ill, differ substantially from those of other mammals, it have garnered significant attention. In this article, we offer a systematic review of the names, attributes, and functions of innate and adaptive immune cells & molecules across different bat species. This includes descriptions of the differences shown by research between 71 bat species in 10 families, as well as comparisons between bats and other mammals. Studies of the immune cells & molecules of different bat species are necessary to understand the unique antiviral immunity of bats. By providing comprehensive information on these unique immune responses, it is hoped that new insights will be provided for the study of co-evolutionary dynamics between viruses and the bat immune system, as well as human antiviral immunity.


Asunto(s)
Inmunidad Adaptativa , Quirópteros , Inmunidad Innata , Quirópteros/virología , Quirópteros/inmunología , Animales , Humanos , Virus/inmunología , Virus/clasificación , Virosis/inmunología , Virosis/virología
5.
J Med Virol ; 96(3): e29528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501378

RESUMEN

The emerging Omicron subvariants have a remarkable ability to spread and escape nearly all current monoclonal antibody (mAb) treatments. Although the virulence of SARS-CoV-2 has now diminished, it remains a significant threat to public health due to its high transmissibility and susceptibility to mutation. Therefore, it is urgent to develop broad-acting and potent therapeutics targeting current and emerging Omicron variants. Here, we identified a panel of Omicron BA.1 spike receptor-binding domain (RBD)-targeted nanobodies (Nbs) from a naive alpaca VHH library. This panel of Nbs exhibited high binding affinity to the spike RBD of wild-type, Alpha B.1.1.7, Beta B.1.351, Delta plus, Omicron BA.1, and BA.2. Through multivalent Nb construction, we obtained a subpanel of ultrapotent neutralizing Nbs against Omicron BA.1, BA.2, BF.7 and even emerging XBB.1.5, and XBB.1.16 pseudoviruses. Protein structure prediction and docking analysis showed that Nb trimer 2F2E5 targets two independent RBD epitopes, thus minimizing viral escape. Taken together, we obtained a panel of broad and ultrapotent neutralizing Nbs against Omicron BA.1, Omicron BA.2, BF.7, XBB.1.5, and XBB.1.16. These multivalent Nbs hold great promise for the treatment against SARS-CoV-2 infection and could possess a superwide neutralizing breadth against novel omicron mutants or recombinants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/genética , Anticuerpos Monoclonales , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
6.
Langmuir ; 40(27): 13995-14006, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38917479

RESUMEN

Effective elimination of insoluble emulsified oils and soluble organic dyes has received extensively attention in wastewater treatment. In this work, a chitosan and polydopamine @ aramid nanofibers (CS&PDA@ANFs) aerogel membrane was fabricated through an integration methodology consisting of phase inversion and successive deposition of PDA and CS. The as-prepared aerogel membrane possessed a satisfactory three-dimensional interpenetrating network architecture with high porosity and desirable mechanical property. Furthermore, due to the synergistic effect of hydrophilic CS and PDA, the resultant membrane exhibited good superhydrophilicity and underwater superoleophobicity associated with favorable oil resistance/antioil fouling properties. The combination of the interconnected porous structures and super wettability endowed the aerogel membranes with desirable oil-in-water emulsion separation performance. Particularly, an extremely high permeation flux (3729 L/m2/h) and a rejection rate (99.3%) were achieved for the CS&PDA@ANFs membrane. Moreover, diverse dyes could be also adsorbed by the resultant membrane, and the equilibrium adsorption capacity of cationic dye malachite green could reach 36 mg/g, with a high rejection rate over 97%. This study indicated that the CS&PDA@ANFs aerogel membrane held great promise for practical applications in complex wastewater remediation.

7.
Clin Exp Rheumatol ; 42(1): 30-38, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019149

RESUMEN

OBJECTIVES: Increased serum uric acid (SUA) levels are well known to be concomitant of cardiovascular and kidney diseases, and have been proposed to be implicated in the development of arteriolar damage. The aim of the present study was to assess the association between SUA levels, renal damage and its implication for outcome in patients with lupus nephritis (LN). METHODS: This retrospective study included 194 cases with biopsy proven LN at the Affiliated Hospital of Qingdao University between January 2013 and June 2021. We reviewed clinical, laboratory and histologic data of patients and analysed the correlation between SUA levels, renal damage and the primary outcome (death or ESRD). Biopsy-proven arteriolar damage was defined by the presence of arteriolar hyalinosis and/or intimal thickening. RESULTS: Compared to LN patients without hyperuricemia, LN patients with hyperuricaemia presented with higher BP, hyperlipidaemia, lower eGFR, lower haemoglobin, lower serum albumin, worse renal arteriolar damage and proteinuria, and also higher SLEDAI score, activity index and chronicity index (p<0.05). At logistic regression analysis, SUA was independently related to the presence of arteriolar damage. For each 100 µmol/L increase in SUA levels the risk for arteriolar damage raised by 53.8% (hazard ratio [HR] =1.538; 95% CI: 1.147-2.063; p=0.004) after adjustment for haemoglobin, serum creatinine and erythrocyte sedimentation rate. Cox regression analysis showed that female (HR=3.180; 95% CI: 1.216-8.313; p=0.018), white blood cell count (HR=1.111; 95% CI: 1.027-1.202; p=0.009), SUA (HR=1.100; 95% CI: 1.023-1.253; p=0.035), serum creatinine (HR=1.800; 95% CI: 1.348-2.404; p<0.001), and renal arteriolar damage (HR=3.117; 95% CI: 1.022-9.511; p=0.046) was significantly associated with development of ESRD or death in patients with LN after adjustment for several potential confounding factors. Furthermore, for each 100 µmol/L increase in SUA levels, the risk of ESRD or death increased by 10%. CONCLUSIONS: SUA levels are directly associated with renal arteriolar damage and poor prognosis in LN patients. Hyperuricaemia is an important predictor for poor prognosis in patients with LN.


Asunto(s)
Hiperuricemia , Fallo Renal Crónico , Nefritis Lúpica , Humanos , Femenino , Nefritis Lúpica/complicaciones , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/patología , Ácido Úrico , Hiperuricemia/complicaciones , Hiperuricemia/diagnóstico , Estudios Retrospectivos , Creatinina , Riñón/patología , Hemoglobinas , Factores de Riesgo
8.
Appl Opt ; 63(10): 2462-2468, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568524

RESUMEN

In this paper, the green upconversion (UC) fluorescence emission from E r 3+/Y b 3+/H o 3+ tri-doped tellurite glass is investigated for temperature sensing. The doping of H o 3+ ions not only enhances the chance of energy level transition but also avoids the influence of the thermal effect caused by the proximity of 2 H 11/2 and 4 S 3/2 energy levels. The luminescence characteristics at different Y b 3+ and H o 3+ ion concentration doping molar ratios were investigated, and the strongest luminescence characteristics were exhibited when the Y b 3+ ion concentration was at 5 mol% and H o 3+ at 0.2 mol%. Based on this, a tri-doped T e O 2-Z n O-B i 2 O 3 (TZB) no-core fiber was fabricated and connected with multimode fibers (MMFs) to form a temperature sensor. The temperature sensing performance of the tri-doped TZB temperature sensor was evaluated in detail over the temperature range of 255-365 K. The repeatability and stability of the temperature sensor was experimentally verified. The E r 3+/Y b 3+/H o 3+ tri-doped sensor can be used for noninvasive optical temperature sensing in the fields of environmental monitoring, biological sensing, and industrial process temperature control, etc.

9.
Am J Otolaryngol ; 45(3): 104229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422555

RESUMEN

PURPOSE: This multicenter, prospective study is designed to investigate whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is present in the Middle Ear Effusion (MEE) of patients developing Otitis Media with Effusion (OME) subsequent to an Omicron infection. The objective is to elucidate any potential association between the virus and the condition. METHODS: This study, conducted from January to June 2023, spanned the Otolaryngology departments of two medical institutions in Eastern China. Patients manifesting OME subsequent to Omicron infection from both hospitals were subjected to comprehensive otolaryngological assessments, including pure-tone audiometry (PTA), tympanometry, otoscopic examination, and nasopharyngolaryngoscopy. Subsequently, MEE samples extracted from these patients were analyzed through RT-PCR to detect SARS-CoV-2. RESULTS: In this study, 23 patients (32-84 years; 57.5 ± 14.8 mean age; 47.8 % male) presented OME in 25 ears post-Omicron infection, with 21 (91.3 %) exhibiting unilateral symptoms. The median duration from infection to MEE sampling was 21 days (IQR: 25-46; range: 11-150). Predominantly, 64.0 % exhibited Type B tympanograms, and fluid accumulation was observed in 88.0 % of ears. SARS-CoV-2 was detected in 3 MEE samples (12.0 %), with cycle threshold values ranging between 25.65 and 33.30. CONCLUSIONS: Our study highlights the potential effects of COVID-19 on the middle ear, suggesting a link between SARS-CoV-2 and OME onset. The virus, a significant contributor to OME, is detectable in the MEE nearly a month post-Omicron infection, indicating a potential alteration in OME treatment strategies and a risk of recurrence, emphasizing the necessity for otolaryngologist vigilance.


Asunto(s)
COVID-19 , Otitis Media con Derrame , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico , Otitis Media con Derrame/virología , Otitis Media con Derrame/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Anciano , Anciano de 80 o más Años , China/epidemiología , Pruebas de Impedancia Acústica/métodos
10.
Mikrochim Acta ; 191(8): 472, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028442

RESUMEN

A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N3) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Titanio , Técnicas Biosensibles/métodos , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Titanio/química , Catálisis , Procesos Fotoquímicos , Humanos , Polimerizacion , Silanos/química
11.
Genomics ; 115(6): 110719, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37757977

RESUMEN

Heat stroke (HS) is an acute physical illness associated with a higher risk of organ dysfunction. This study is the first to explore exosomal miR-548x-3p derived from human bone marrow mesenchymal stem cells (BMSCs) in the pyroptosis of vascular endothelial cells (VECs) associated with HS. Human BMSCs-derived exosome alleviated the injury of the heart, liver, kidney and ileum tissues, the increase of IL-1ß, IL-18 and TNF-α levels, pyroptosis of endothelial cells and the increase of HGMB1, NLRP3, ASC, caspase1 and GSDMD-N protein expression in HS mice and HS-induced human umbilical vein endothelial cells (HUVECs). miR-548x-3p was down-expressed in HS patients, while up-expressed in BMSCs-derived exosome. BMSCs-ExomiR-548x-3p mimics to inhibit pyroptosis, inflammation and HGMB1/NLRP3 activation in HS-induced HUVECs and HS mice, which were blocked by overexpression of HMGB1. In conclusion, human BMSCs-derived exosomes carried miR-548x-3p mimics to inhibit pyroptosis of VECs through HMGB1 in HS mice.


Asunto(s)
Proteína HMGB1 , Golpe de Calor , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Ratones , Proteína HMGB1/genética , Células Endoteliales de la Vena Umbilical Humana , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis
12.
Nano Lett ; 23(12): 5663-5672, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37310991

RESUMEN

MXene fibers are promising candidates for weaveable and wearable energy storage devices because of their good electrical conductivity and high theoretical capacitance. Herein, we propose a nacre-inspired strategy for simultaneously improving the mechanical strength, volumetric capacitance, and rate performance of MXene-based fibers through synergizing the interfacial interaction and interlayer spacing between Ti3C2TX nanosheets. The optimized hybrid fibers (M-CMC-1.0%) with 99 wt % MXene loading exhibit an improved tensile strength of ∼81 MPa and a high specific capacitance of 885.0 F cm-3 at 1 A cm-3 together with an outstanding rate performance of 83.6% retention at 10 A cm-3 (740.0 F cm-3). As a consequence, the fiber supercapacitor (FSC) based on the M-CMC-1.0% hybrid delivers an output capacitance of 199.5 F cm-3, a power density of 1186.9 mW cm-3, and an energy density of 17.7 mWh cm-3, respectively, implying its promising applications as portable energy storage devices for future wearable electronics.

13.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732163

RESUMEN

The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.


Asunto(s)
Urodelos , Animales , Urodelos/genética , China , Especies en Peligro de Extinción , ADN Ambiental/genética , ADN Ambiental/análisis , ADN Mitocondrial/genética , Genoma Mitocondrial
14.
J Am Chem Soc ; 145(9): 5486-5495, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36820815

RESUMEN

Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.

15.
Neurobiol Dis ; 182: 106131, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086755

RESUMEN

Epilepsy is a complex disease that requires various approaches for its study. This short review discusses the contribution of theoretical and computational models. The review presents theoretical frameworks that underlie the understanding of certain seizure properties and their classification based on their dynamical properties at the onset and offset of seizures. Dynamical system tools are valuable resources in the study of seizures. These tools can provide insights into seizure mechanisms and offer a framework for their classification, by analyzing the complex, dynamic behavior of seizures. Additionally, computational models have high potential for clinical applications, as they can be used to develop more accurate diagnostic and personalized medicine tools. We discuss various modeling approaches that span different scales and levels, while also questioning the neurocentric view, emphasizing the importance of considering glial cells. Finally, we explore the epistemic value provided by this type of approach.


Asunto(s)
Epilepsia , Modelos Neurológicos , Humanos , Convulsiones , Biofisica
16.
Br J Haematol ; 202(1): 31-39, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092433

RESUMEN

As the COVID-19 variant Omicron surge in Beijing, China, a better understanding of risk factors for adverse outcomes may improve clinical management in patients with haematological malignancies (HM) diagnosed with COVID-19. The study sample includes 412 cases, mainly represented by acute leukaemia, chronic myeloid leukaemia (CML), plasma cell disorders and lymphoma and chronic lymphocytic leukaemia. COVID-19 pneumonia was observed in 10.4% (43/412) of patients, and severe/critical illness was observed in 5.3% (22/412). Among the 86 cases with advanced malignancies, 17.6% (12/86) of patients developed severe/critical COVID-19, which was significantly higher than reported in patients with stable malignancies (9/326, 2.70%, p < 0.001). Similarly, the advanced malignancy cohort had a higher mortality rate (9/86, 10.5% vs. 0/326, 0%, p < 0.001) and a poor 30-day overall survival (OS) compared with the stable malignancy cohort (74.2% vs. 100.0%, p < 0.0001). Overall, nine patients (2.2%) died. The primary cause of death was progressive HM in four patients and a combination of both COVID-19 and HM in five patients. In the multivariable analysis, over 65 years of age, comorbidities and advanced malignancy were correlated with severe/critical COVID-19 in HM patients. This study sheds light on the poor outcomes among COVID-19 HM patients with the leading cause of advanced malignancy.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Leucemia Linfocítica Crónica de Células B , Humanos , SARS-CoV-2 , COVID-19/complicaciones , COVID-19/epidemiología , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/epidemiología , Leucemia Linfocítica Crónica de Células B/complicaciones , Leucemia Linfocítica Crónica de Células B/epidemiología
17.
Small ; 19(48): e2304687, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37518858

RESUMEN

MXene nanosheets are believed to be an ideal candidate for fabricating fiber supercapacitors (FSCs) due to their metallic conductivity and superior volumetric capacitance, while challenges remain in continuously collecting bare MXene fibers (MFs) via the commonly used wet-spinning technique due to the intercalation of water molecules and a weak interaction between Ti3 C2 TX nanosheets in aqueous coagulation bath that ultimately leads to a loosely packed structure. To address this issue, for the first time, a dry-spinning strategy is proposed by engineering the rheological behavior of Ti3 C2 TX sediment and extruding the highly viscose stock directly through a spinneret followed by a solvent evaperation induced solidification. The dry-spun Ti3 C2 TX fibers show an optimal conductivity of 2295 S cm-1 , a tensile strength of 64 MPa and a specific capacitance of 948 F cm-3 . Nitrogen (N) doping further improves the capacitance of MFs to 1302 F cm-3 without compromising their mechanical and electrical properties. Moreover, the FSC based on N-doped MFs exhibits a high volumetric capacitance of 293 F cm-3 , good stability over 10 000 cycles, excellent flexibility upon bending-unbending, superior energy/power densities and anti-self-discharging property. The excellent electrochemical and mechanical properties endow the dry-spun MFs great potential for future applications in wearable electronics.

18.
Small ; 19(7): e2204744, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494189

RESUMEN

Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2 . It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4-2.2 nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.

19.
J Neurosci Res ; 101(6): 930-951, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36720002

RESUMEN

Interleukin-1ß (IL-1ß) has been described to exert important effect on synapses in the brain. Here, we explored if the synapses in the hippocampus would be adversely affected following intracerebral IL-1ß injection and, if so, to clarify the underlying molecular mechanisms. Adult male Sprague-Dawley rats were divided into control, IL-1ß, IL-1ß + PD98059, and IL-1ß + MG132 groups and then sacrificed for detection of synaptophysin (syn) protein level, synaptosome glutamate release, and synapse ultrastructure by western blotting, glutamate kit and electron microscopy, respectively. These rats were tested by Morris water maze for learning and memory ability. It was determined by western blotting whether IL-1ß exerted the effect of on syn and siah1 expression in primary neurons via extracellular regulated protein kinases (ERK) signaling pathway. Intrahippocampal injection of IL-1ß in male rats and sacrificed at 8d resulted in a significant decrease in syn protein, damage of synapse structure, and abnormal release of neurotransmitters glutamate. ERK inhibitor and proteosome inhibitor treatment reversed the above changes induced by IL-1ß both in vivo and in vitro. In primary cultured neurons incubated with IL-1ß, the expression level of synaptophysin was significantly downregulated coupled with abnormal glutamate release. Furthermore, use of PD98059 had confirmed that ERK signaling pathway was implicated in synaptic disorders caused by IL-1ß treatment. The present results suggest that exogenous IL-1ß can suppress syn protein level and glutamate release. A possible mechanism for this is that IL-1ß induces syn degradation that is regulated by the E3 ligase siah1 via the ERK signaling pathway.


Asunto(s)
Proteínas Quinasas , Transducción de Señal , Animales , Masculino , Ratas , Glutamatos , Interleucina-1beta/metabolismo , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Sinaptofisina/metabolismo
20.
Cell Mol Neurobiol ; 43(7): 3669-3692, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479855

RESUMEN

Neuroinflammation is a common characteristic of intracranial infection (ICI), which is associated with the activation of astrocytes and microglia. MiRNAs are involved in the process of neuroinflammation. This study aimed to investigate the potential mechanism by which miR-338-3p negatively modulate the occurrence of neuroinflammation. We here reported that the decreased levels of miR-338-3p were detected using qRT-PCR and the upregulated expression of TNF-α and IL-1ß was measured by ELISA in the cerebrospinal fluid (CSF) in patients with ICI. A negative association between miR-338-3p and TNF-α or IL-1ß was revealed by Pearson correlation analysis. Sprague-Dawley (SD) rats were injected with LPS (50 µg) into left cerebral ventricule (LCV), following which the increased expression of TNF-α and IL-1ß and the reduction of miR-338-3p expression were observed in the corpus callosum (CC). Moreover, the expression of TNF-α and IL-1ß in the astrocytes and microglia in the CC of LCV-LPS rats were saliently inhibited by the overexpression of miR-338-3p. In vitro, cultured astrocytes and BV2 cells transfected with mimic-miR-338-3p produced less TNF-α and IL-1ß after LPS administration. Direct interaction between miR-338-3p and STAT1 mRNA was validated by biological information analysis and dual luciferase assay. Furthermore, STAT1 pathway was found to be implicated in inhibition of neuroinflammation induced by mimic miR-338-3p in the astrocytes and BV2 cells. Taken together, our results suggest that miR-338-3p suppress the generation of proinflammatory mediators in astrocyte and BV2 cells induced by LPS exposure through the STAT1 signal pathway. MiR-338-3p could act as a potential therapeutic strategy to reduce the neuroinflammatory response. Diagram describing the cellular and molecular mechanisms associated with LPS-induced neuroinflammation via the miR-338-3p/STAT1 pathway. LPS binds to TLRs on astrocytes or microglia to activate the STAT1 pathway and upregulate the production of pro-inflammatory cytokines. However, miR-338-3p inhibits the expression of STAT1 and reduces the production of inflammatory mediators.


Asunto(s)
MicroARNs , Enfermedades Neuroinflamatorias , Ratas , Animales , Ratas Sprague-Dawley , Cuerpo Calloso , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa , MicroARNs/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA